Applied Mathematics and Mechanics (English Edition) ›› 2025, Vol. 46 ›› Issue (2): 233-252.doi: https://doi.org/10.1007/s10483-025-3219-6
Previous Articles Next Articles
Shuai MO1,2,3,†(), Xu TANG1, Keren CHEN1, H. HOUJOH4, Wei ZHANG1
Received:
2024-08-23
Revised:
2024-12-11
Online:
2025-02-03
Published:
2025-02-02
Contact:
Shuai MO, E-mail: moshuai2010@163.comSupported by:
2010 MSC Number:
Shuai MO, Xu TANG, Keren CHEN, H. HOUJOH, Wei ZHANG. Continuously adjustable mechanical metamaterial based on planetary gear trains and external meshing gears. Applied Mathematics and Mechanics (English Edition), 2025, 46(2): 233-252.
Fig. 2
MEG: (a) the deformation cloud map in the Y-direction under compression load; (b) a 4-layer 3×3 unit cell diagram; (c) the deformation cloud map in the X-direction under shear load; (d) the deformation and Young's modulus in the Y-direction; (e) the 3×3 unit cell diagram; (f) the shear deformation and shear modulus in the X-direction (color online)"
Fig. 4
MIP4: (a) the deformation cloud map in the Y-direction under compression load; (b) a 4-layer 3×3 cell diagram; (c) the shear deformation and shear modulus in the X-direction; (d) the deformation and Young's modulus in the Y-direction; (e) the 3×3 single-layer cell diagram; (f) the shear deformation and shear modulus in the X-direction (color online)"
Fig. 6
MIP2: (a) a 4-layer 3×3 unit cell diagram; (b) the deformation cloud map in the Y-direction under compression load; (c) the deformation cloud map in the X-direction under shear load; (d) the 3×3 unit cell diagram; (e) the deformation and Young's modulus in the Y-direction; (f) the shear deformation and shear modulus in the X-direction (color online)"
Fig. 19
Dynamic signal experimental response diagram of the MIP4: (a) time-domain acceleration graph under the external excitation frequency of 10 Hz; (b) time-domain acceleration graph under the external excitation frequency of 75 Hz; (c) time-frequency domain acceleration map under the external excitation frequency of 10 Hz; (d) time-frequency domain acceleration map under the external excitation frequency of 75 Hz (color online)"
Fig. 21
Dynamic signal experimental response diagram of the MIP2's unit cell: (a) time-domain acceleration graph under the external excitation frequency of 10 Hz; (b) time-domain acceleration graph under the external excitation frequency of 75 Hz; (c) time-frequency domain acceleration map under the external excitation frequency of 10 Hz; (d) time-frequency domain acceleration map under the external excitation frequency of 75 Hz (color online)"
[1] | MACONACHIE, T., LEARY, M., LOZANOVSKI, B., ZHANG, X. Z., QIAN, M., FARUQUE, O., and BRANDT, M. SLM lattice structures: properties, performance, applications and challenges. Materials & Design, 183, 108137 (2019) |
[2] | GE, J. G., YAN, X. C., LEI, Y. P., AHMED, M., O'REILLY, P., ZHANG, C., LUPOI, R., and YIN, S. A detailed analysis on the microstructure and compressive properties of selective laser melted Ti6Al4V lattice structures. Materials & Design, 198, 109292 (2021) |
[3] | BANG, G. B., KIM, W. R., KIM, H. K., PARK, H. K., KIM, G. H., HYUN, S. K., KWON, O., and KIM, H. G. Effect of process parameters for selective laser melting with SUS316L on mechanical and microstructural properties with variation in chemical composition. Materials & Design, 197, 109221 (2021) |
[4] | REN, Z. H., CHANG, Y. H., MA, Y. M., SHIH, K. L., DONG, B. W., and LEE, C. Leveraging of MEMS technologies for optical metamaterials applications. Advanced Optical Materials, 8(3), 1900653 (2020) |
[5] | CHEN, Y. X., AI, B., and WONG, Z. J. Soft optical metamaterials. Nano Convergence, 7, 1–17 (2020) |
[6] | ZHENG, X. Y., LEE, H., WEISGRABER, T. H., SHUSTEFF, M., DEOTTE, J., DUOSS, E. B., KUNTZ, J. D., BIENER, M. M., GE, Q., JACKSON, J. A., KUCHEYEV, S. O., FANG, N. X., and SPADACCINI, C. M. Ultralight, ultrastiff mechanical metamaterials. Science, 344, 1373–1377 (2014) |
[7] | GARLAND, A. P., ADSTEDT, K. M., CASIAS, Z. J., WHITE, B. C., MOOK, W. M., KAEHR, B., JARED, B. H., LESTER, B. T., LEATHE, N. S., SCHWALLER, E., and BOYCE, B. L. Coulombic friction in metamaterials to dissipate mechanical energy. Extreme Mechanics Letters, 40, 100847 (2020) |
[8] | CLAEYS, C., DE MELO, N. G. R., VAN BELLE, L., DECKERS, E., and DESMET, W. Design and validation of metamaterials for multiple structural stop bands in waveguides. Extreme Mechanics Letters, 12, 7–22 (2017) |
[9] | ZHANG, C., CAO, W. K., YANG, J., KE, J. C., CHEN, M. Z., WU, L. T., CHENG, Q., and CUI, T. J. Multiphysical digital coding metamaterials for independent control of broadband electromagnetic and acoustic waves with a large variety of functions. ACS Applied Materials & Interfaces, 11, 17050–17055 (2019) |
[10] | CHEN, H. and CHAN, C. T. Acoustic cloaking in three dimensions using acoustic metamaterials. Applied Physics Letters, 91(18), 183518 (2007) |
[11] | MUELLER, J. and SHEA, K. Stepwise graded struts for maximizing energy absorption in lattices. Extreme Mechanics Letters, 25, 7–15 (2018) |
[12] | WEI, K., YANG, Q. D., LING, B., XIE, H. Q., QU, Z. L., and FANG, D. N. Mechanical responses of titanium 3D kagome lattice structure manufactured by selective laser melting. Extreme Mechanics Letters, 23, 41–48 (2018) |
[13] | AL-SAEDI, D. S. J., MASOOD, S. H., FAIZAN-UR-RAB, M., ALOMARAH, A., and PONNUSAMY, P. Mechanical properties and energy absorption capability of functionally graded F2BCC lattice fabricated by SLM. Materials & Design, 144, 32–44 (2018) |
[14] | JIN, N., WANG, F. C., WANG, Y. W., ZHANG, B. W., CHENG, H. W., and ZHANG, H. M. Failure and energy absorption characteristics of four lattice structures under dynamic loading. Materials & Design, 169, 107655 (2021) |
[15] | MASKERY, I., ABOULKHAIR, N. T., AREMU, A. O., TUCK, C. J., ASHCROFT, I. A., WILDMAN, R. D., and HAGUE, R. J. M. A mechanical property evaluation of graded density Al-Si10-Mg lattice structures manufactured by selective laser melting. Materials Science and Engineering: A, 670, 264–274 (2016) |
[16] | ZHANG, L., FEIH, S., DAYNES, S., CHANG, S., WANG, M. Y., WEI, J., and LU, W. F. Energy absorption characteristics of metallic triply periodic minimal surface sheet structures under compressive loading. Additive Manufacturing, 23, 505–515 (2018) |
[17] | WANG, B., TAN, X. J., ZHU, S. W., CHEN, S., YAO, K. L., XU, P. F., WANG, L. C., WU, H. P., and SUN, Y. G. Cushion performance of cylindrical negative stiffness structures: analysis and optimization. Composite Structures, 227, 111276 (2019) |
[18] | KÖNEN, P., HAASE, C., BÜLTMANN, J., ZIEGLER, S., SCHLEIFENBAUM, J. H., and BLECK, W. Mechanical properties and deformation behavior of additively manufactured lattice structures of stainless steel. Materials & Design, 145, 205–217 (2018) |
[19] | ALBERDI, R., DINGREVILLE, R., ROBBINS, J., WALSH, T., WHITE, B. C., JARED, B., and BOYCE, B. L. Multi-morphology lattices lead to improved plastic energy absorption. Materials & Design, 194, 108883 (2020) |
[20] | WANG, X. Z., RUI, S. T., YANG, S. K., ZHANG, W. Q., and MA, F. Y. A low-frequency pure metal metamaterial absorber with continuously tunable stiffness. Applied Mathematics and Mechanics (English Edition), 45(7), 1209–1224 (2024) https://doi.org/10.1007/s10483-024-3158-7 |
[21] | ZHAO, L., LU, Z. Q., DING, H., and CHEN, L. Q. A viscoelastic metamaterial beam for integrated vibration isolation and energy harvesting. Applied Mathematics and Mechanics (English Edition), 45(7), 1243–1260 (2024) https://doi.org/10.1007/s10483-024-3159-7 |
[22] | DONG, X. J., WANG, S., WANG, A. S., WANG, L., ZHANG, Z. Z., TIE, Y. H., LIN, Q. Y., and SUN, Y. T. Low-frequency bandgap and vibration suppression mechanism of a novel square hierarchical honeycomb metamaterial. Applied Mathematics and Mechanics (English Edition), 45(10), 1841–1856 (2024) https://doi.org/10.1007/s10483-024-3168-7 |
[23] | HAN, D. H., JIA, Q., GAO, Y. Y., JIN, Q. D., FANG, X., WEN, J. H., and YU, D. L. Local resonance metamaterial-based integrated design for suppressing longitudinal and transverse waves in fluid-conveying pipes. Applied Mathematics and Mechanics (English Edition), 45(10), 1821–1840 (2024) https://doi.org/10.1007/s10483-024-3166-8 |
[24] | YU, R. H., RUI, S. T., WANG, X. Z., and MA, F. Y. An integrated load-bearing and vibration-isolation supporter with decorated metamaterial absorbers. International Journal of Mechanical Sciences, 253, 108406 (2023) |
[25] | RUI, S. T., ZHANG, W. Q., YU, R. H., WANG, X. Z., and MA, F. Y. A multi-band elastic metamaterial for low-frequency multi-polarization vibration absorption. Mechanical Systems and Signal Processing, 216, 111464 (2024) |
[26] | ZHANG, C., ZHANG, D., YIN, F. J., GUO, M. J., MA, F. Y., and WU, C. J. “Borrow-force-attack-force” by multi-scale elastic metamaterial with nonlinear damping. Composites Part B-Engineering, 288, 111884 (2025) |
[27] | SMITH, M. G., CROY, I., ÖGREN, M., and WAYE, K. P. On the influence of freight trains on humans: a laboratory investigation of the impact of nocturnal low frequency vibration and noise on sleep and heart rate. PLoS ONE, 8, 55829 (2013) |
[28] | OUAKKA, S., GUEDDIDA, A., PENNEC, Y., DJAFARI-ROUHANI, B., KOUROUSSIS, G., and VERLINDEN, O. Efficient mitigation of railway induced vibrations using seismic metamaterials. Engineering Structures, 284, 115767 (2023) |
[29] | RAI, G., RAHN, C., SMITH, E., and MARR, C. 3D printed circular nodal plate stacks for broadband vibration isolation. Journal of Sound and Vibration, 554, 117647 (2023) |
[30] | LUO, Y. M., HUANG, T. T., ZHANG, Y., XU, H. H., XIE, Y. M., and REN, X. Novel meter-scale seismic metamaterial with low-frequency wide bandgap for Lamb waves. Engineering Structures, 275, 115321 (2023) |
[31] | ZHANG, K., LUO, J., HONG, F., and DENG, Z. C. Seismic metamaterials with cross-like and square steel sections for low-frequency wide band gaps. Engineering Structures, 232, 111870 (2021) |
[32] | BAROUTAJI, A., ARJUNAN, A., ROBINSION, J., RAMADAN, M., and OLABI, A. G. Metamaterial for crashworthiness applications. Reference Module in Materials Science and Materials Engineering, 3, 57–69 (2021) |
[33] | NIAN, Y. Z., WAN, S., WANG, X., ZHOU, P., AVCAR, M., and LI, M. Study on crashworthiness of nature-inspired functionally graded lattice metamaterials for bridge pier protection against ship collision. Engineering Structures, 277, 115404 (2023) |
[34] | ZHANG, L. W., BAI, Z. H., ZHANG, Q., JIN, Y., and CHEN, Y. F. On vibration isolation performance and crashworthiness of a three-dimensional lattice metamaterial. Engineering Structures, 292, 116510 (2023) |
[35] | TANCOGNE-DEJEAN, T. and MOHR, D. Stiffness and specific energy absorption of additively-manufactured metallic BCC metamaterials composed of tapered beams. International Journal of Mechanical Sciences, 141, 101–116 (2018) |
[36] | YIN, H. F., LIU, Z. P., DAI, J. L., WEN, G. L., and ZHANG, C. Crushing behavior and optimization of sheet-based 3D periodic cellular structures. Composites Part B-Engineering, 182, 107565 (2020) |
[37] | MONTAZERI, A., BAHMANPOUR, E., and SAFARABADI, M. A Poisson's ratio sign-switching mechanical metamaterial with tunable stiffness. International Journal of Mechanical Sciences, 260, 108670 (2023) |
[38] | LYU, Y. T., SONG, X. S., WANG, H., and JIANG, J. A novel mechanical metamaterial with tunable stiffness and individually adjustable Poisson's ratio. Materials Today Communications, 40, 110135 (2024) |
[39] | WANG, S. B., GUO, J. X., BICZO, A., and FENG, N. Design and macroscopic mechanical responses of auxetic metamaterials with tunable stiffness. Materials & Design, 241, 112913 (2024) |
[40] | KHAJEPOUR, M., BAYATI, A., REZAEE, B., KHATAMI, A., SOLTANI, M. A., FARAJI, G., ABRINIA, K., BAGHANI, M., and BANIASSADI, M. Numerical and experimental investigation of 3D printed tunable stiffness metamaterial with real-time response using digital light processing technology. Journal of Materials Research and Technology, 33, 480–490 (2024) |
[41] | LI, F. Y., ZHANG, Q., WANG, Z. J., and ZHU, D. C. A new three-dimensional re-entrant negative Poisson's ratio metamaterial with tunable stiffness. Engineering Structures, 306, 117793 (2024) |
[42] | FANG, X., WEN, J. H., CHENG, L., YU, D. L., ZHANG, H. J., and GUMBSCH, P. Programmable gear-based mechanical metamaterials. Nature Materials, 21, 869–876 (2022) |
[43] | YU, X. L., ZHOU, J., LIANG, H. Y., JIANG, Z. Y., and WU, L. L. Mechanical metamaterials associated with stiffness, rigidity and compressibility: a brief review. Progress in Materials Science, 94, 114–173 (2018) |
[44] | MO, S., ZHOU, C. P., WANG, L., HU, Q. S., GAO, H. J., and CEN, G. J. Research on dynamic characteristics of electromechanical coupling of robot joint crack transmission system. Journal of Mechanical Engineering, 58, 57–67 (2022) |
[1] | Wei CHEN, Zhihong TANG, Yufen LIAO, Linxin PENG. A six-variable quasi-3D isogeometric approach for free vibration of functionally graded graphene origami-enabled auxeticmetamaterial plates submerged in a fluid medium [J]. Applied Mathematics and Mechanics (English Edition), 2025, 46(1): 157-176. |
[2] | Fan YANG, Zhaoyang MA, Xingming GUO. Bandgap characteristics analysis and graded design of a novel metamaterial for flexural wave suppression [J]. Applied Mathematics and Mechanics (English Edition), 2025, 46(1): 1-24. |
[3] | Shuo WANG, Anshuai WANG, Yansen WU, Xiaofeng LI, Yongtao SUN, Zhaozhan ZHANG, Qian DING, G. D. AYALEW, Yunxiang MA, Qingyu LIN. Ultra-wide band gap and wave attenuation mechanism of a novel star-shaped chiral metamaterial [J]. Applied Mathematics and Mechanics (English Edition), 2024, 45(7): 1261-1278. |
[4] | Long ZHAO, Zeqi LU, Hu DING, Liqun CHEN. A viscoelastic metamaterial beam for integrated vibration isolation and energy harvesting [J]. Applied Mathematics and Mechanics (English Edition), 2024, 45(7): 1243-1260. |
[5] | Zhou HU, Zhibo WEI, Yan CHEN, Rui ZHU. Reconfigurable mechanism-based metamaterials for ternary-coded elastic wave polarizers and programmable refraction control [J]. Applied Mathematics and Mechanics (English Edition), 2024, 45(7): 1225-1242. |
[6] | Xingzhong WANG, Shiteng RUI, Shaokun YANG, Weiquan ZHANG, Fuyin MA. A low-frequency pure metal metamaterial absorber with continuously tunable stiffness [J]. Applied Mathematics and Mechanics (English Edition), 2024, 45(7): 1209-1224. |
[7] | Wei WEI, Feng GUAN, Xin FANG. A low-frequency and broadband wave-insulating vibration isolator based on plate-shaped metastructures [J]. Applied Mathematics and Mechanics (English Edition), 2024, 45(7): 1171-1188. |
[8] | Changqi CAI, Chenjie ZHU, Fengyi ZHANG, Jiaojiao SUN, Kai WANG, Bo YAN, Jiaxi ZHOU. Modeling and analysis of gradient metamaterials for broad fusion bandgaps [J]. Applied Mathematics and Mechanics (English Edition), 2024, 45(7): 1155-1170. |
[9] | Yuxin YAO, Yuansheng MA, Fang HONG, Kai ZHANG, Tingting WANG, Haijun PENG, Zichen DENG. On Klein tunneling of low-frequency elastic waves in hexagonal topological plates [J]. Applied Mathematics and Mechanics (English Edition), 2024, 45(7): 1139-1154. |
[10] | Chao WANG, Honggang ZHAO, Yang WANG, Jie ZHONG, Dianlong YU, Jihong WEN. Topology optimization of chiral metamaterials with application to underwater sound insulation [J]. Applied Mathematics and Mechanics (English Edition), 2024, 45(7): 1119-1138. |
[11] | Yabin JING, Lifeng WANG, Yuqiang GAO. Mass-spring model for elastic wave propagation in multilayered van der Waals metamaterials [J]. Applied Mathematics and Mechanics (English Edition), 2024, 45(7): 1107-1118. |
[12] | M. SAFI, M. VAKILIFARD, M.J. MAHMOODI. Frequency-dependent viscoelasticity effects on the wave attenuation performance of multi-layered periodic foundations [J]. Applied Mathematics and Mechanics (English Edition), 2024, 45(3): 407-424. |
[13] | Jianguo CUI, Tianzhi YANG, Wenju HAN, Liang LI, Muqing NIU, Liqun CHEN. Tunable topological interface states via a parametric system in composite lattices with/without symmetric elements [J]. Applied Mathematics and Mechanics (English Edition), 2024, 45(12): 2055-2074. |
[14] | Yu ZHANG, Daming NIE, Xuyao MAO, Li LI. A thermodynamics-consistent spatiotemporally-nonlocal model for microstructure-dependent heat conduction [J]. Applied Mathematics and Mechanics (English Edition), 2024, 45(11): 1929-1948. |
[15] | Jinhui LIU, Yu XUE, Zhihong GAO, A. O. KRUSHYNSKA, Jinqiang LI. Actively tunable sandwich acoustic metamaterials with magnetorheological elastomers [J]. Applied Mathematics and Mechanics (English Edition), 2024, 45(11): 1875-1894. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||