Applied Mathematics and Mechanics (English Edition) ›› 2025, Vol. 46 ›› Issue (11): 2035-2054.doi: https://doi.org/10.1007/s10483-025-3314-9
Previous Articles Next Articles
M. R. ZARASTVAND, E. ABDOLI, R. TALEBITOOTI†(
)
Received:2025-05-06
Revised:2025-09-16
Published:2025-10-29
Contact:
†R. TALEBITOOTI, E-mail: rtalebi@iust.ac.ir2010 MSC Number:
M. R. ZARASTVAND, E. ABDOLI, R. TALEBITOOTI. A lattice metamaterial-based sandwich cylindrical system for numerical simulation approach of vibroacoustic transmission considering triply periodic minimal surface. Applied Mathematics and Mechanics (English Edition), 2025, 46(11): 2035-2054.
Table?2
Frequency responses (unit: Hz) of a single-layer cylinder based on the analytical (FSDT and TSDT) and numerical (FE) analyses compared with those provided by Ref. [69], considering E=200 GPa, ρ=7 760 kg/m3, ν=0.3, and R=1"
| Mode number | |||||
|---|---|---|---|---|---|
| Present (FSDT) | Present (TSDT) | Present (FEM) | Ref. [ | ||
| 1 | 1 | 72.644 73 | 72.644 12 | 76.732 | 73.677 |
| 2 | 69.004 88 | 68.970 36 | 67.675 | 72.173 | |
| 3 | 173.617 80 | 173.402 80 | 170.430 | 185.225 | |
| 2 | 1 | 229.302 30 | 229.308 60 | 221.580 | 216.623 |
| 2 | 120.912 30 | 120.884 30 | 120.990 | 120.913 | |
| 3 | 192.263 70 | 192.027 00 | 196.780 | 199.648 | |
| 3 | 1 | 397.873 80 | 397.915 80 | 393.560 | – |
| 2 | 212.471 80 | 212.465 10 | 207.660 | 204.569 | |
| 3 | 230.810 30 | 230.556 00 | 221.900 | 232.400 | |
| 4 | 1 | 534.628 00 | 534.772 80 | 539.320 | – |
| 2 | 319.144 90 | 319.186 80 | 320.790 | – | |
| 3 | 289.775 80 | 289.519 80 | 276.000 | 283.744 | |
Table?3
Frequency responses of a single-layer cylinder based on the analytical (FSDT and TSDT) and numerical (FE) analyses compared with those provided by Ref. [70], considering E=72 GPa, ρ=2 760 kg/m3, ν=0.3, and R=1"
| Mode number | ||||
|---|---|---|---|---|
| Present (FSDT) | Present (TSDT) | Present (FEM) | Ref. [ | |
| 6 | 12.413 91 | 12.413 86 | – | 12.452 6 |
| 7 | 17.560 82 | 17.558 50 | – | 17.139 4 |
| 8 | 24.023 92 | 24.021 90 | 24.350 | 22.548 4 |
| 9 | – | – | – | 28.679 2 |
| 10 | 39.630 23 | 39.628 84 | 35.075 | 35.531 7 |
| 11 | 45.108 14 | 45.108 08 | 46.378 | 43.105 6 |
| 12 | 49.335 35 | 49.319 96 | 52.688 | 51.401 4 |
| 13 | 60.580 89 | 60.565 40 | 60.203 | 60.418 5 |
| 14 | 71.758 04 | 71.743 48 | 75.372 | 70.157 0 |
| 15 | 86.546 02 | 86.533 15 | 84.580 | 80.617 4 |
| 16 | 90.883 61 | 90.833 16 | 95.924 | 91.798 4 |
| 17 | 104.273 30 | 104.262 90 | 104.880 | 103.701 3 |
| 18 | 120.135 90 | 120.139 60 | 116.050 | 116.325 7 |
| 19 | 124.154 30 | 124.147 40 | 136.940 | 129.671 2 |
| 20 | 139.935 80 | 139.937 10 | 141.500 | 143.738 3 |
| 21 | 151.424 90 | 151.432 60 | 160.810 | 158.527 8 |
| 22 | – | – | 169.880 | 174.037 2 |
| 23 | 190.502 50 | 190.506 00 | 190.140 | 190.268 4 |
| 24 | 213.909 50 | 213.642 90 | 206.040 | 207.221 9 |
| 25 | – | – | 225.030 | 224.895 2 |
Table?4
Frequency responses (unit: Hz) of a TPMS-SCS with respect to various modes and TPMS architectures based on the analytical (FSDT and TSDT) analyses compared with those provided by the numerical FE approach, considering E=70 GPa, ρ=2 760 kg/m3, ν=0.33, R=1.5 m, hc=0.01 m, h=0.012 m, and dr=35%"
| Mode | TPMS | Present (FSDT) | Present (TSDT) | Present (FEM) | RE/% |
|---|---|---|---|---|---|
| (1,1) | G | 146.342 60 | 146.342 60 | 145.440 | 0.62 |
| P | 146.342 60 | 146.342 60 | 147.040 | -0.71 | |
| IWP | 146.342 60 | 146.342 60 | 146.020 | 0.22 | |
| (1,2) | G | 497.599 70 | 497.599 70 | 497.330 | 0.05 |
| P | 497.599 70 | 497.599 70 | 496.710 | 0.17 | |
| IWP | 497.599 70 | 497.599 70 | 498.800 | -0.24 | |
| (2,1) | G | 46.280 95 | 46.280 93 | 49.285 | -6.09 |
| P | 46.280 95 | 46.280 93 | 49.717 | -6.91 | |
| IWP | 46.280 95 | 46.280 93 | 49.497 | -6.49 | |
| (2,2) | G | 177.689 20 | 177.689 20 | 177.880 | -0.10 |
| P | 177.689 20 | 177.689 20 | 178.310 | -0.34 | |
| IWP | 177.689 20 | 177.689 20 | 176.510 | 0.66 | |
| (1,3) | G | 912.756 80 | 912.756 90 | 912.170 | 0.06 |
| P | 912.756 80 | 912.756 90 | 912.360 | 0.04 | |
| IWP | 912.756 80 | 912.756 90 | 912.340 | 0.04 | |
| (3,1) | G | 22.554 70 | 22.554 68 | 23.254 | -3.00 |
| P | 22.554 70 | 22.554 68 | 23.350 | -3.40 | |
| IWP | 22.554 70 | 22.554 68 | 23.299 | -3.19 |
| [1] | MA, K. and BAZILEVS, Y. Isogeometric analysis of architected materials and structures. Engineering with Computers, 40, 3389–3403 (2024) |
| [2] | GANDY, P. J. and KLINOWSKI, J. Exact computation of the triply periodic G (gyroid’) minimal surface. Chemical Physics Letters, 321, 363–371 (2000) |
| [3] | GANDY, P. J. F., CVIJOVIĆ, D., MACKAY, A. L., and KLINOWSKI, J. Exact computation of the triply periodic D (diamond’) minimal surface. Chemical Physics Letters, 314, 543–551 (1999) |
| [4] | LI, S. H., JIANG, W. C., ZHU, X. L., and XIE, X. F. Effect of localized defects on mechanical and creep properties for pyramidal lattice truss panel structure by analytical, experimental and finite element methods. Thin-Walled Structures, 170, 108531 (2022) |
| [5] | ASADI JAFARI, M. H., ZARASTVAND, M. R., and ZHOU, J. H. Doubly curved truss core composite shell system for broadband diffuse acoustic insulation. Journal of Vibration and Control, 30, 4035–4051 (2024) |
| [6] | ZHANG, Z. J., ZHANG, Q. C., HUANG, L., ZHANG, D. Z., and JIN, F. Effect of elevated temperature on the out-of-plane compressive properties of nickel based pyramidal lattice truss structures with hollow trusses. Thin-Walled Structures, 159, 107247 (2021) |
| [7] | BIOT, M. A. Theory of propagation of elastic waves in a fluid-saturated porous solid, I. low frequency range. The Journal of the Acoustical Society of America, 28, 168–178 (1956) |
| [8] | BIOT, M. A. Theory of propagation of elastic waves in a fluid-saturated porous solid. II, higher frequency range. The Journal of the Acoustical Society of America, 28, 179–191 (1956) |
| [9] | BOLTON, J. S., SHIAU, N. M., and KANG, Y. J. Sound transmission through multi-panel structures lined with elastic porous materials. Journal of Sound and Vibration, 191, 317–347 (1996) |
| [10] | LEE, J. H. and KIM, J. Simplified method to solve sound transmission through structures lined with elastic porous material. The Journal of the Acoustical Society of America, 110, 2282–2294 (2001) |
| [11] | KUMAR, R. and HUNDAL, B. S. Symmetric wave propagation in a fluid-saturated incompressible porous medium. Journal of Sound and Vibration, 288, 361–373 (2005) |
| [12] | UMNOVA, O., ATTENBOROUGH, K., and LINTON, C. M. Effects of porous covering on sound attenuation by periodic arrays of cylinders. The Journal of the Acoustical Society of America, 119, 278–284 (2006) |
| [13] | DANESHJOU, K., RAMEZANI, H., and TALEBITOOTI, R. Wave transmission through laminated composite double-walled cylindrical shell lined with porous materials. Applied Mathematics and Mechanics (English Edition), 32(6), 701–718 (2011) https://doi.org/10.1007/s10483-011-1450-9 |
| [14] | ZHOU, J., BHASKAR, A., and ZHANG, X. The effect of external mean flow on sound transmission through double-walled cylindrical shells lined with poroelastic material. Journal of Sound and Vibration, 333, 1972–1990 (2014) |
| [15] | GAO, W. Y., CUI, Z. W., and WANG, K. X. Wave propagation in poroelastic hollow cylinder immersed in fluid with seismoelectric effect. Journal of Sound and Vibration, 332, 5014–5028 (2013) |
| [16] | RAMEZANI, H. and SAGHAFI, A. Optimization of a composite double-walled cylindrical shell lined with porous materials for higher sound transmission loss by using a genetic algorithm. Mechanics of Composite Materials, 50, 71–82 (2014) |
| [17] | LIU, Y. and HE, C. Analytical modelling of acoustic transmission across double-wall sandwich shells: effect of an air gap flow. Composite Structures, 136, 149–161 (2016) |
| [18] | LIU, Y. and HE, C. B. On sound transmission through double-walled cylindrical shells lined with poroelastic material: comparison with Zhou’s results and further effect of external mean flow. Journal of Sound and Vibration, 358, 192–198 (2015) |
| [19] | ZHOU, J., BHASKAR, A., and ZHANG, X. Sound transmission through double cylindrical shells lined with porous material under turbulent boundary layer excitation. Journal of Sound and Vibration, 357, 253–268 (2015) |
| [20] | LIU, Y. and HE, C. B. Diffuse field sound transmission through sandwich composite cylindrical shells with poroelastic core and external mean flow. Composite Structures, 135, 383–396 (2016) |
| [21] | TALEBITOOTI, R., DANESHJOU, K., and KORNOKAR, M. Three dimensional sound transmission through poroelastic cylindrical shells in the presence of subsonic flow. Journal of Sound and Vibration, 363, 380–406 (2016) |
| [22] | MAGNIEZ, J., ALI HAMDI, M., CHAZOT, J. D., and TROCLET, B. A mixed “Biot-shell” analytical model for the prediction of sound transmission through a sandwich cylinder with a poroelastic core. Journal of Sound and Vibration, 360, 203–223 (2016) |
| [23] | GEYER, T. F. and SARRADJ, E. Circular cylinders with soft porous cover for flow noise reduction. Experiments in Fluids, 57, 30 (2016) |
| [24] | TALEBITOOTI, R., GOHARI, H. D., and ZARASTVAND, M. R. Multi objective optimization of sound transmission across laminated composite cylindrical shell lined with porous core investigating non-dominated sorting genetic algorithm. Aerospace Science and Technology, 69, 269–280 (2017) |
| [25] | DANESHJOU, K., TALEBITOOTI, R., and KORNOKAR, M. Vibroacoustic study on a multilayered functionally graded cylindrical shell with poroelastic core and bonded-unbonded configuration. Journal of Sound and Vibration, 393, 157–175 (2017) |
| [26] | OLIAZADEH, P., FARSHIDIANFAR, A., and CROCKER, M. J. Experimental and analytical investigation on sound transmission loss of cylindrical shells with absorbing material. Journal of Sound and Vibration, 434, 28–43 (2018) |
| [27] | TALEBITOOTI, R., CHOUDARI KHAMENEH, A. M., ZARASTVAND, M. R., and KORNOKAR, M. Investigation of three-dimensional theory on sound transmission through compressed poroelastic sandwich cylindrical shell in various boundary configurations. Journal of Sandwich Structures & Materials, 21, 2313–2357 (2019) |
| [28] | GOLZARI, M. and JAFARI, A. A. Sound transmission loss through triple-walled cylindrical shells with porous layers. The Journal of the Acoustical Society of America, 143, 3529–3544 (2018) |
| [29] | DARVISH GOHARI, H., ZARASTVAND, M., and TALEBITOOTI, R. Acoustic performance prediction of a multilayered finite cylinder equipped with porous foam media. Journal of Vibration and Control, 26, 899–912 (2020) |
| [30] | ZHANG, Q. L. Sound transmission through micro-perforated double-walled cylindrical shells lined with porous material. Journal of Sound and Vibration, 485, 115539 (2020) |
| [31] | SHAHSAVARI, H., TALEBITOOTI, R., and KORNOKAR, M. Analysis of wave propagation through functionally graded porous cylindrical structures considering the transfer matrix method. Thin-Walled Structures, 159, 107212 (2021) |
| [32] | SHAHSAVARI, H., KORNOKAR, M., TALEBITOOTI, R., and DANESHJOU, K. The study of sound transmission through sandwich cylindrical shells with circumferentially corrugated cores filled with porous materials. Composite Structures, 291, 115608 (2022) |
| [33] | THONGCHOM, C., JEARSIRIPONGKUL, T., REFAHATI, N., ROUDGAR SAFFARI, P., ROODGAR SAFFARI, P., SIRIMONTREE, S., and KEAWSAWASVONG, S. Sound transmission loss of a honeycomb sandwich cylindrical shell with functionally graded porous layers. Buildings, 12, 151 (2022) |
| [34] | TALEBITOOTI, R. and ZARASTVAND, M. R. The effect of nature of porous material on diffuse field acoustic transmission of the sandwich aerospace composite doubly curved shell. Aerospace Science and Technology, 78, 157–170 (2018) |
| [35] | TALEBITOOTI, R., ZARASTVAND, M. R., and GOHARI, H. D. The influence of boundaries on sound insulation of the multilayered aerospace poroelastic composite structure. Aerospace Science and Technology, 80, 452–471 (2018) |
| [36] | TALEBITOOTI, R., ZARASTVAND, M., and DARVISHGOHARI, H. Multi-objective optimization approach on diffuse sound transmission through poroelastic composite sandwich structure. Journal of Sandwich Structures & Materials, 23, 1221–1252 (2021) |
| [37] | ZARASTVAND, M. R., ASADIJAFARI, M. H., and TALEBITOOTI, R. Improvement of the low-frequency sound insulation of the poroelastic aerospace constructions considering Pasternak elastic foundation. Aerospace Science and Technology, 112, 106620 (2021) |
| [38] | WANG, Y. D., LIAN, Y. P., WANG, Z. D., WANG, C. P., and FANG, D. N. A novel triple periodic minimal surface-like plate lattice and its data-driven optimization method for superior mechanical properties. Applied Mathematics and Mechanics (English Edition), 45(2), 217–238 (2024) https://doi.org/10.1007/s10483-024-3079-7 |
| [39] | AL-KETAN, O. and ABU AL-RUB, R. K. Multifunctional mechanical metamaterials based on triply periodic minimal surface lattices. Advanced Engineering Materials, 21, 1900524 (2019) |
| [40] | CAI, Z. Z., LIU, Z. H., HU, X. D., KUANG, H. K., and ZHAI, J. S. The effect of porosity on the mechanical properties of 3D-printed triply periodic minimal surface (TPMS) bioscaffold. Bio-Design and Manufacturing, 2, 242–255 (2019) |
| [41] | VIET, N. V. and ZAKI, W. Free vibration and buckling characteristics of functionally graded beams with triply periodic minimal surface architecture. Composite Structures, 274, 114342 (2021) |
| [42] | SIMSEK, U., ARSLAN, T., KAVAS, B., GAYIR, C. E., and SENDUR, P. Parametric studies on vibration characteristics of triply periodic minimum surface sandwich lattice structures. The International Journal of Advanced Manufacturing Technology, 115, 675–690 (2021) |
| [43] | LI, Z. T., CHEN, Z. B., CHEN, X. B., and ZHAO, R. C. Mechanical properties of triply periodic minimal surface (TPMS) scaffolds: considering the influence of spatial angle and surface curvature. Biomechanics and Modeling in Mechanobiology, 22, 541–560 (2023) |
| [44] | ZHANG, Y. J., LIU, B., PENG, F., JIA, H. R., ZHAO, Z. A., DUAN, S. Y., WANG, P. D., and LEI, H. S. Adaptive enhancement design of triply periodic minimal surface lattice structure based on non-uniform stress distribution. Applied Mathematics and Mechanics (English Edition), 44(8), 1317–1330 (2023) https://doi.org/10.1007/s10483-023-3013-9 |
| [45] | FENG, G. Z., LI, S., XIAO, L. J., and SONG, W. D. Mechanical properties and deformation behavior of functionally graded TPMS structures under static and dynamic loading. International Journal of Impact Engineering, 176, 104554 (2023) |
| [46] | ZHAO, M., LI, X. W., ZHANG, D. Z., and ZHAI, W. TPMS-based interpenetrating lattice structures: design, mechanical properties and multiscale optimization. International Journal of Mechanical Sciences, 244, 108092 (2023) |
| [47] | STEPINAC, L., GALIĆ, J., and BINIČKI, M. Fast estimation of bending stiffness in sandwich-structured composites with 3D printed TPMS core. Mechanics of Advanced Materials and Structures, 31, 9200–9209 (2024) |
| [48] | PHUNG-VAN, P., HUNG, P. T., NGUYEN-GIA, H., and NGUYEN-XUAN, H. Free vibration analysis of functionally graded triply periodic minimal surface plates using a first order shear deformation theory and meshfree method. Journal of Advanced Engineering and Computation, 7, 237–246 (2023) |
| [49] | NGUYEN-XUAN, H., TRAN, K. Q., THAI, C. H., and LEE, J. Modelling of functionally graded triply periodic minimal surface (FG-TPMS) plates. Composite Structures, 315, 116981 (2023) |
| [50] | BOROVKOV, A. I., MASLOV, L. B., ZHMAYLO, M. A., TARASENKO, F. D., and NEZHINSKAYA, L. S. Finite element analysis of elastic properties of metamaterials based on triply periodic minimal surfaces. Materials Physics and Mechanics, 52, 11–29 (2024) |
| [51] | NGUYEN, N. V. Free vibration analysis of functionally graded triply periodic minimal surface plates. Proceedings of the International Conference on Sustainable Energy Technologies, Springer, Singapore, 319–328 (2024) |
| [52] | LUO, T. H., WANG, L. Z., LIU, F. Y., CHEN, M., and LI, J. Modal response improvement of periodic lattice materials with a shear modulus-based FE homogenized model. Materials, 17, 1314 (2024) |
| [53] | ABUEIDDA, D. W., JASIUK, I., and SOBH, N. A. Acoustic band gaps and elastic stiffness of PMMA cellular solids based on triply periodic minimal surfaces. Materials & Design, 145, 20–27 (2018) |
| [54] | VIET, N. V., KARATHANASOPOULOS, N., and ZAKI, W. Mechanical attributes and wave propagation characteristics of TPMS lattice structures. Mechanics of Materials, 172, 104363 (2022) |
| [55] | ZHANG, P. F., LI, Z. H., LIU, B., ZHOU, Y. J., ZHAO, M., SUN, G. H., PEI, S. C., KONG, X. N., and BAI, P. K. Sound absorption performance of micro-perforated plate sandwich structure based on triply periodic minimal surface. Journal of Materials Research and Technology, 27, 386–400 (2023) |
| [56] | LIN, C. G., WEN, G. L., YIN, H. F., WANG, Z. P., LIU, J., and XIE, Y. M. Revealing the sound insulation capacities of TPMS sandwich panels. Journal of Sound and Vibration, 540, 117303 (2022) |
| [57] | WU, Y. Z., QI, X., SUN, L. F., WANG, B., HU, L., WANG, P., and LI, W. J. Sound transmission loss and bending properties of sandwich structures based on triply periodic minimal surfaces. Thin-Walled Structures, 204, 112324 (2024) |
| [58] | ZHANG, L., FEIH, S., DAYNES, S., CHANG, S., WANG, M. Y., WEI, J., and LU, W. F. Energy absorption characteristics of metallic triply periodic minimal surface sheet structures under compressive loading. Additive Manufacturing, 23, 505–515 (2018) |
| [59] | WANG, H. D., LI, S. Q., and WANG, C. X. Energy absorption characteristics of triply periodic minimal surface lattices. Journal of Physics: Conference Series, 2535, 012025 (2023) |
| [60] | QIU, N., WAN, Y. H., SHEN, Y. J., and FANG, J. G. Experimental and numerical studies on mechanical properties of TPMS structures. International Journal of Mechanical Sciences, 261, 108657 (2024) |
| [61] | ZARASTVAND, M. R., GHASSABI, M., and TALEBITOOTI, R. Acoustic insulation characteristics of shell structures: a review. Archives of Computational Methods in Engineering, 28, 505–523 (2021) |
| [62] | RAJAGOPALAN, S. and ROBB, R. A. Schwarz meets Schwann: design and fabrication of biomorphic and durataxic tissue engineering scaffolds. Medical Image Analysis, 10, 693–712 (2006) |
| [63] | ALMAHRI, S., SANTIAGO, R., LEE, D. W., RAMOS, H., ALABDOULI, H., ALTENEIJI, M., GUAN, Z. W., CANTWELL, W., and ALVES, M. Evaluation of the dynamic response of triply periodic minimal surfaces subjected to high strain-rate compression. Additive Manufacturing, 46, 102220 (2021) |
| [64] | QATU, M. S. Vibration of Laminated Shells and Plates, Elsevier, Amsterdam (2004) |
| [65] | BLAISE, A. and LESUEUR, C. Acoustic transmission through a 2-D orthotropic multi-layered infinite cylindrical shell. Journal of Sound and Vibration, 155, 95–109 (1992) |
| [66] | KOVAL, L. R. On sound transmission into a thin cylindrical shell under “flight conditions”. Journal of Sound and Vibration, 48, 265–275 (1976) |
| [67] | REAEI, S., TARKASHVAND, A., and TALEBITOOTI, R. Applying a functionally graded viscoelastic model on acoustic wave transmission through the polymeric foam cylindrical shell. Composite Structures, 244, 112261 (2020) |
| [68] | LEE, J. H. and KIM, J. Study on sound transmission characteristics of a cylindrical shell using analytical and experimental models. Applied Acoustics, 64, 611–632 (2003) |
| [69] | WANG, W. C., QATU, M. S., and YARAHMADIAN, S. Accuracy of shell and solid elements in vibration analyses of thin- and thick-walled isotropic cylinders. International Journal of Vehicle Noise and Vibration, 8, 221–236 (2012) |
| [70] | BLEVINS, R. D. Formulas for Natural Frequency and Mode Shape, Van Nostrand Reinhold Company, New York (1979) |
| [1] | C. C. PARRA, R. VENEGAS, T. G. ZIELIŃSKI. Acoustic wave propagation in double-porosity permeo-elastic media [J]. Applied Mathematics and Mechanics (English Edition), 2025, 46(8): 1511-1532. |
| [2] | Yongqi LIU, Jianwei WANG, Dong DU, Guohua NIE. A variational differential quadrature formulation for buckling analysis of anisogrid composite lattice conical shells [J]. Applied Mathematics and Mechanics (English Edition), 2025, 46(11): 2155-2176. |
| [3] | Shuo WANG, Anshuai WANG, Yansen WU, Xiaofeng LI, Yongtao SUN, Zhaozhan ZHANG, Qian DING, G. D. AYALEW, Yunxiang MA, Qingyu LIN. Ultra-wide band gap and wave attenuation mechanism of a novel star-shaped chiral metamaterial [J]. Applied Mathematics and Mechanics (English Edition), 2024, 45(7): 1261-1278. |
| [4] | Yanda WANG, Yanping LIAN, Zhidong WANG, Chunpeng WANG, Daining FANG. A novel triple periodic minimal surface-like plate lattice and its data-driven optimization method for superior mechanical properties [J]. Applied Mathematics and Mechanics (English Edition), 2024, 45(2): 217-238. |
| [5] | Xingjian DONG, Shuo WANG, Anshuai WANG, Liang WANG, Zhaozhan ZHANG, Yuanhao TIE, Qingyu LIN, Yongtao SUN. Low-frequency bandgap and vibration suppression mechanism of a novel square hierarchical honeycomb metamaterial [J]. Applied Mathematics and Mechanics (English Edition), 2024, 45(10): 1841-1856. |
| [6] | Jiajia MAO, Hong CHENG, Tianxue MA. Elastic wave insulation and propagation control based on the programmable curved-beam periodic structure [J]. Applied Mathematics and Mechanics (English Edition), 2024, 45(10): 1791-1806. |
| [7] | A. RAHMANI, S. FAROUGHI, M. SARI. On wave dispersion of rotating viscoelastic nanobeam based on general nonlocal elasticity in thermal environment [J]. Applied Mathematics and Mechanics (English Edition), 2023, 44(9): 1577-1596. |
| [8] | Feiyang HE, Zhiyu SHI, Denghui QIAN, Y. K. LU, Yujia XIANG, Xuelei FENG. Flexural wave bandgap properties of phononic crystal beams with interval parameters [J]. Applied Mathematics and Mechanics (English Edition), 2023, 44(2): 173-188. |
| [9] | Xinte WANG, Juan LIU, Biao HU, Bo ZHANG, Huoming SHEN. Wave propagation responses of porous bi-directional functionally graded magneto-electro-elastic nanoshells via nonlocal strain gradient theory [J]. Applied Mathematics and Mechanics (English Edition), 2023, 44(10): 1821-1840. |
| [10] | Pengfei LI, Fan YANG, Peng WANG, Jinfeng ZHAO, Zheng ZHONG. A novel design scheme for acoustic cloaking of complex shape based on region partitioning and multi-origin coordinate transformation [J]. Applied Mathematics and Mechanics (English Edition), 2022, 43(11): 1641-1656. |
| [11] | Qili TANG, Yunqing HUANG. Parallel finite element computation of incompressible magnetohydrodynamics based on three iterations [J]. Applied Mathematics and Mechanics (English Edition), 2022, 43(1): 141-154. |
| [12] | M. SHOJAEIFARD, M. BAGHANI. Finite deformation swelling of a temperature-sensitive hydrogel cylinder under combined extension-torsion [J]. Applied Mathematics and Mechanics (English Edition), 2020, 41(3): 409-424. |
| [13] | Yijie BIAN, Puhao LI, Fan YANG, Peng WANG, Weiwei LI, Hualin FAN. Deformation mode and energy absorption of polycrystal-inspired square-cell lattice structures [J]. Applied Mathematics and Mechanics (English Edition), 2020, 41(10): 1561-1582. |
| [14] | Yang YANG, Yong NI. Elastic interaction between inclusions and tunable periodicity of superlattice structure in nanowires [J]. Applied Mathematics and Mechanics (English Edition), 2020, 41(10): 1461-1478. |
| [15] | M. FARAJI-OSKOUIE, A. NOROUZZADEH, R. ANSARI, H. ROUHI. Bending of small-scale Timoshenko beams based on the integral/differential nonlocal-micropolar elasticity theory: a finite element approach [J]. Applied Mathematics and Mechanics (English Edition), 2019, 40(6): 767-782. |
| Viewed | ||||||
|
Full text |
|
|||||
|
Abstract |
|
|||||

Email Alert
RSS