[1] Krylov N,Bogoliubov N.Les methodes de la mecarique nonlineaire[J].Chaire de la Phys,and Math of Academic Science U K,1934,8,44-51.
[2] Chen Y S,Langford W F.The subharmonic bif urcation solution of nonlinear Mathieu s equation and Euler dynamically buckling problem[J].Acta Mech Sinica,1988,4(4):350-362.
[3] Noah S T,Sundararajan P.Significance of considering nonlinear effects in predicting the dynamic behavior of rotating machinery[J].J Vib Control,1995,1(1):431-458.
[4] Nataraj C,Nelson H D,Arkere N.The effect of a Coulomb spine on rotor dynamics/analysis[A].In:In stability in Rotating Machinery NASA CP-2409[C].New York:Springer,1985,225-233.
[5] Shaw J,Shaw S W.The eff ects of unbalance on oil whirl[J].Nonlinear Dynamics,1990,1(4):293-311.
[6] Sundararajan P,Noah S T.Dynamics of forced nonlinear systems using shooting arc length continuation method[J].ASME J Vib Acous,1997,119(1):9-20.
[7] Chen Y S,Ding Q.Stability and bifurcation of nonlinear rotor dynamics[J].J Nonlinear Dynamics in Sci Tech,1996,3(1):13-22.
[8] Chen Y S,Meng Q.Bifurcations of a nonlinear rotor/bearing system[J].J Vib En gng,1996,9(3):266-275.
[9] Chen Y S,Ding Q.Stability and Hopf bif urcation of nonlinear rotor/bearing system[J].J Vib Engng,1997,10(3):368-374.
[10] Ding Q,Chen Y S.Study on mechanism subharmonic instability of nonlinear rotor/bearing system[J].J Vib Engng,1997,10(4):404-412.
[11] Yu P,Huseyin K.Parametrically excited nonlinear systems:a comparison of certain methods[J].Int J Nonli Mech,1998,33(6):967-978.
[12] Chow S Y,Hale J K.Methods of Bifurcation Th eory[M].New York:Springer,1982.
[13] Golubisky M,Schaeffer D G.Sin gularities and Groups in Bifurcation Theory[M].Vol.1.New York:Springer,1985.
[14] Bogoliubov N,Mitropolsky Y A.Asymptotic Methods in the Theory of Nonlinear Oscillations[M].New York:Gordon&Breach,1961.
[15] CHEN Yu-shu,ZHAN Kai-jun.Some extended results of subharmonic resonance bifurcation theory of nonlinear Mathieu equation![J].Applied Mathematics and Mechanics(English Ed),1990,11(3):255-262.
[16] Chen Y S,Zhan K J,Langford W F.New results on bifurcation theory of subharmonic resonance in nonlinear system with parametric excitation:degenerate bif urcation solution[J].J Vib Engng,1990,3(2):38-47.
[17] Chen Y S,Xu J.Global bifurcations and chaos in Van der Pol-Duff ing-Mathieu s system with three-well potential oscillator[J].Acta Mech Sinica,1995,11(4):357-372.
[18] Chen Y S,Xu J.Bifurcations in nonlinear systems with parametric excitation[J].Doklady Mathematics,Russia,1997,56(3):880-883.
[19] M uszynska A.Improvements in lightly loaded rotor/bearing and rotor/seal models[J].ASME J Vib Acous,1988,110(2):129-136.
[20] Carr J.Application of Center Manifold Theory[M].New York:Springer,1981.
[21] Sethna P R.On averaged and normal form equations[J].Nonlinear Dynamics,1995,7(1):1-10.
[22] CHEN Yu-shu,Andrew Leung.Bifurcation and Chaos in Engineerin g[M].London:Springer-Verlag,1988.C-L Method and Its Applicat ion153. |