[1] Zakharov, V. E. Collapse of Langmuir waves. Sov. Phys. JETP, 35, 908-914 (1972)
[2] Pecher, H. An improved local well-posedness result for the one-dimensional Zakharov system. J.Math. Anal. Appl., 342, 1440-1454 (2008)
[3] Guo, B. L., Zhang, J. J., and Pu, X. K. On the existence and uniqueness of smooth solution fora generalized Zakharov equation. J. Math. Anal. Appl., 365, 238-253 (2010)
[4] Linares, F. and Matheus, C. Well-posedness for the 1D Zakharov-Rubenchik system. Adv. Differ.Equ., 14, 261-288 (2009)
[5] Masmoudi, N. and Nakanishi, K. Energy convergence for singular limits of Zakharov type systems.Invent. Math., 172, 535-583 (2008)
[6] Garcia, L. G., Haas, F., de Oliveira, L. P. L., and Goedert, J. Modified Zakharov equations forplasmas with a quantum correction. Phys. Plasmas, 12, 012302 (2005)
[7] Lions, J. L. Quelques Methods de Resolution des Problemes aux Limites Non Lineaires, DunodGauthier Villard, Paris, 12-53 (1969)
[8] Added, H. and Added, S. Existence Globale Dune Dolution Reguliere des Equations de la Turbu-lence de Langmuir en Dimension 2, C.R.A.S., Paris, 12 (1984)
[9] Added, H. and Added, S. Equations of Langmuir turbulence and nonlinear Schr╫dinger equation:smoothness and approximation. J. Funct. Anal., 79, 183-210 (1988) |