[1] Karniadakis, G., Beskok, A., and Aluru, N. Microflows and Nanoflows: Fundamentals and Simulation, Springer, New York (2005)
[2] Laser, D. J. and Santiago, J. G. A review of micropumps. Journal of Micromechanics and Microengineering, 14, R35-R64 (2004)
[3] Stone, H. A., Stroock, A. D., and Ajdari, A. Engineering flows in small devices: microfluidics toward a lab-on-a-chip. Annual Review of Fluid Mechanics, 36, 381-411 (2004)
[4] Abhari, F., Jaafar, H., and Yunus, N. A. M. A comprehensive study of micropumps technologies. International Journal of Electrochemical Science, 7, 9765-9780 (2012)
[5] Burgreen, D. and Nakache, F. R. Electrokinetic flow in ultrafine capillary slits. Journal of Physical Chemistry, 68, 1084-1091 (1964)
[6] Xie, Z. and Jian, Y. Rotating electroosmotic flow of power-law fluids at high zeta potential. Colloids and Surfaces, A: Physicochemical and Engineering Aspects, 461, 231-239 (2014)
[7] Jian, Y. J., Su, J., Chang, L., Liu, Q. S., and He, G. H. Transient electroosmotic flow of general Maxwell fluids through a slit microchannel. Zeitschrift für Angewandte Mathematik und Physik, 65, 435-447 (2014)
[8] Jang, J. and Lee, S. S. Theoretical and experimental study ofMHD micropump. Sensors Actuators, A: Physical, 80, 84-89 (2000)
[9] Pamme, N. Magnetism and microfluidics. Lab on a Chip, 6, 24-38 (2006)
[10] Buren, M., Jian, Y., and Chang, L. Electromagnetohydrodynamic flow through a microparallel channel with corrugated walls. Journal of Physics, D: Applied Physics, 47, 425501 (2014)
[11] Buren, M. and Jian, Y. Electromagnetohydrodynamic (EMHD) flow between two transversely wavy microparallel plates. Electrophoresis, 36, 1539-1548 (2015)
[12] Dutta, P. and Beskok, A. Analytical solution of time periodic electroosmotic flows: analogies to Stokes' second problem. Analytical Chemistry, 73, 5097-5102 (2001)
[13] Keh, H. J. and Tseng, H. C. Transient electrokinetic flow in fine capillaries. Journal of Colloid and Interface Science, 242, 450-495 (2001)
[14] Kang, Y., Yang, C., and Huang, X. Dynamic aspects of electroosmotic flow in a cylindrical microcapillary. International Journal of Engineering Science, 40, 2203-2221 (2002)
[15] Wang, X. M., Chen, B., and Wu, J. K. A semianalytical solution of periodical electro-osmosis in a rectangular microchannel. Physics of Fluids, 19, 127101 (2007)
[16] Chakraborty, S. and Ray, S. Mass flow-rate control through time periodic electro-osmotic flows in circular microchannels. Physics of Fluids, 20, 083602 (2008)
[17] Chakraborty, S. and Srivastava, A. K. A generalized model for time periodic electroosmotic flows with overlapping electrical double layers. Langmuir, 23, 12421 (2007)
[18] Jian, Y., Yang, L., and Liu, Q. Time periodic electro-osmotic flow through a microannulus. Physics of Fluids, 22, 042001 (2010)
[19] Jian, Y., Liu, Q., and Yang, L. AC electroosmotic flow of generalized Maxwell fluids in a rectangular microchannel. Journal of Non-Newtonian Fluid Mechanics, 166, 1304-1314 (2011)
[20] Liu, Q., Jian, Y., and Yang, L. Time periodic electroosmotic flow of the generalized Maxwell fluids between two micro-parallel plates. Journal of Non-Newtonian Fluid Mechanics, 166, 478- 486 (2011)
[21] Liu, Q., Jian, Y., and Yang, L. Alternating current electroosmotic flow of the Jeffreys fluids through a slit microchannel. Physics of Fluids, 23, 102001 (2011)
[22] Bhattacharyya, A., Masliyah, J. H., and Yang, J. Oscillating laminar electrokinetic flow in infinitely extended circular microchannels. Journal of Colloid and Interface Science, 261, 12-20 (2003)
[23] Chang, C. C. and Wang, C. Y. Starting electroosmotic flow in an annulus and in a rectangular channel. Electrophoresis, 29, 2970-2979 (2008)
[24] Islam, N. and Wu, J. Microfluidic transport by AC electroosmosis. Journal of Physics: Conference Series, 34, 356-361 (2006)
[25] Erickson, D. and Li, D. Analysis of alternating current electroosmotic flows in a rectangular microchannel. Langmuir, 19, 5421-5430 (2003)
[26] Yang, J., Bhattacharyya, A., Masliyah, J. H., and Kwok, D. Y. Oscillating laminar electrokinetic flow in infinitely extended rectangular microchannels. Journal of Colloid and Interface Science, 261, 21-31 (2003)
[27] Marcos, Yang, C., Ooi, K. T., Wong, T. N., and Masliyah, J. H. Frequency-dependent laminar electroosmotic flow in a closed-end rectangular microchannel. Journal of Colloid and Interface Science, 275, 679-698 (2004)
[28] Minor, M., van der Linde, A. J., van Leeuwen, H. P., and Lyklema, J. Dynamic aspects of electrophoresis and electroosmosis: a new fast method for measuring particle mobilities. Journal of Colloid and Interface Science, 189, 370-375 (1997)
[29] Oddy, M. H., Santiago, J. G., and Mikkelsen, J. C. Electrokinetic instability micromixing. Analytical Chemistry, 73, 5822-5832 (2001)
[30] Das, S. and Chakraborty, S. Transverse electrodes for improved DNA hybridization in microchannels. AIChE Journal, 53, 1086-1099 (2007)
[31] Das, S., Subramanian, K., and Chakraborty, S. Analytical investigations on the effects of substrate kinetics on macromolecular transport and hybridization through microfluidic channels. Colloids and Surfaces, B: Biointerfaces, 58, 203-217 (2007)
[32] Eringen, A. C. Simple microfluids. International Journal of Engineering Science, 2, 205-217 (1964)
[33] Eringen, A. C. Theory of micropolar fluids. Journal of Applied Mathematics and Mechanics, 16, 1-18 (1965)
[34] Eringen, A. C. Microcontinuum Field Theories, II: Fluent Media, Springer, New York (2001)
[35] Hayakawa, H. Slow viscous flows in micropolar fluids. Physical Review E, 61, 5477-5492 (2000)
[36] Papautsky, I., Brazzle, J., Ameel, T., and Frazier, A. B. Laminar fluid behavior in microchannels using micropolar fluid theory. Sensors and Actuators, A: Physical, 73, 101-108 (1999)
[37] Magyari, E., Pop, I., and Valkó, P. P. Stokes' first problem for micropolar fluids. Fluid Dynamics Research, 42, 025503 (2010)
[38] Ariman, T., Turk, M. A., and Sylvester, N. D. Microcontinuum fluid mechanics—a review. International Journal of Engineering Science, 11, 905-930 (1973)
[39] Ariman, T., Turk, M. A., and Sylvester, N. D. Application of microcontinum fluid mechanics. International Journal of Engineering Science, 12, 273-293 (1974)
[40] Stokes, V. K. Theories of Fluids with Microstructures, Springer, New York (1984)
[41] Lukaszewicz, G. Micropolar Fluids: Theory and Application, Birkhäuser, Basel (1999)
[42] Siddiqui, A. A. and Lakhtakia, A. Steady electroosmotic flow of a micropolar fluid in a microchannel. Proceedings of the Royal Society, A: Mathematical, Physical and Engineering Sciences, 465, 501-522 (2009)
[43] Siddiqui, A. A. and Lakhtakia, A. Debye-Hückel solution for steady electro-osmotic flow of micropolar fluid in cylindrical microcapillary. Applied Mathematics and Mechanics (English Edition), 34(11), 1305-1326 (2013) DOI 10.1007/s10483-013-1747-6
[44] Siddiqui, A. A. and Lakhtakia, A. Non-steady electro-osmotic flow of a micropolar fluid in a microchannel. Journal of Physics, A: Mathematical and Theoretical, 42, 355501 (2009)
[45] Misra, J. C., Chandra, S., Shit, G. C., and Kundu, P. K. Electroosmotic oscillatory flow of micropolar fluid in microchannels: application to dynamics of blood flow in microfluidic devices. Applied Mathematics and Mechanics (English Edition), 35(6), 749-766 (2014) DOI 10.1007/s10483-014-1827-6
[46] Hunter, J. Zeta Potential in Colloid Science, Academic Press, New York (1981)
[47] Ahmadi, G. Self-similar solution of imcompressible micropolar boundary layer flow over a semiinfinite plate. International Journal of Engineering Science, 14, 639-646 (1976)
[48] Rees, D. A. S. and Bassom, A. P. The Blasius boundary-layer flow of a micropolar fluid. International Journal of Engineering Science, 34, 113-124 (1996)
[49] Green, N. G., Ramos, A., Gonzalez, A., Morgan, H., and Castellanos, A. Fluid flow induced by nonuniform AC electric fields in electrolytes on microelectrodes, I: experimental measurements. Physical Review E, 61, 4011-4018 (2000) |