[1] Li, D. Q. Encyclopedia of Microfluidics and Nanofluidics, Springer, Heidelberg (2008)
[2] Li, D. Q. Electrokinetics in Microfluidics, Elsevier, Amsterdam (2004)
[3] Masliyah, J. H. and Bhattacharjee, S. Electrokinetic and Colloid Transport Phenomena, John Wiley & Sons, Hoboken (2006) 696 Zhen TAN, Hai-tao QI, and Xiao-yun JIANG
[4] Kirby, B. J. Micro-and Nano-Scale Fluid Mechanics, Cambridge University Press, Cambridge (2010)
[5] Hunter, R. J. Zeta Potential in Colloid Science: Principle and Applications, Academic Press, London (1981)
[6] Zhao, C. L. and Yang, C. Electrokinetics of non-Newtonian fluids: a review. Advances in Colloid and Interface Science, 201, 94-108 (2013)
[7] Das, S. and Chakraborty, S. Analytical solutions for velocity, temperature and concentration distribution in electroosmotic microchannel flows of a non-Newtonian bio-fluid. Analytica Chimica Acta, 559, 15-24 (2006)
[8] Chakraborty, S. Electroosmotically driven capillary transport of typical non-Newtonian biofluids in rectangular microchannels. Analytica Chimica Acta, 605, 175-184 (2007)
[9] Zhao, C. L., Zholkovskij, E., Masliyah, J. H., and Yang, C. Analysis of electroosmotic flow of power-law fluids in a slit microchannel. Journal of Colloid and Interface Science, 326, 503-510 (2008)
[10] Zhao, C. L. and Yang, C. An exact solution for electroosmosis of non-Newtonian fluids in mi-crochannels. Journal of Non-Newtonian Fluid Mechanics, 166, 1076-1079 (2011)
[11] Tang, G. H., Li, X. F., He, Y. L., and Tao, W. Q. Electroosmotic flow of non-Newtonian fluid in microchannels. Journal of Non-Newtonian Fluid Mechanics, 157, 133-137 (2009)
[12] Park, H. M. and Lee, W. M. Helmholtz-Smoluchowski velocity for viscoelastic electroosmotic flows. Journal of Colloid and Interface Science, 317, 631-636 (2008)
[13] Berli, C. L. A. and Olivares, M. L. Electrokinetic flow of non-Newtonian fluids in microchannels. Journal of Colloid and Interface Science, 320, 582-589 (2008)
[14] Afonso, A. M., Alves, M. A., and Pinho, F. T. Analytical solution of mixed electro-osmotic/pressure driven flows of viscoelastic fluids in microchannels. Journal of Non-Newtonian Fluid Mechanics, 159, 50-63 (2009)
[15] Sadeghi, A., Saidi, M. H., andMozafari, A. A. Heat transfer due to electroosmotic flow of viscoelas-tic fluids in a slit microchannel. International Journal of Heat and Mass Transfer, 54, 4069-4077 (2011)
[16] Hayat, T., Afzal, S., and Hendi, A. Exact solutions of electroosmotic flow in generalized Burg-ers fluid. Applied Mathematics and Mechanics (English Edition), 32, 1119-1126 (2011) DOI 10.1007/s10483-011-1486-6
[17] Zhao, M. L., Wang, S. W., and Wei, S. S. Transient electro-osmotic flow of Oldroyd-B fluids in a straight pipe of circular cross section. Journal of Non-Newtonian Fluid Mechanics, 201, 135-139 (2013)
[18] Zhao, C. L. and Yang, C. Exact solutions for electro-osmotic flow of viscoelastic fluids in rectan-gular micro-channels. Applied Mathematics and Computation, 211, 502-509 (2009)
[19] Yang, F. Q. Flow behavior of an Eyring fluid in a nanotube: the effect of the slip boundary condition. Applied Physics Letters, 90, 133105 (2007)
[20] Thompson, P. A. and Troian, S. M. A general boundary condition for liquid flow at solid surfaces. nature, 389, 360-362 (1997)
[21] Eyring, H. Viscosity, plasticity, and diffusion as examples of absolute reaction rates. Journal of Chemical Physics, 4, 283-291 (1936)
[22] Bird, R. B., Armstrong, R., and Hassager, O. Dynamics of Polymeric Liquids, John Wiley & Sons, New York, 169-253 (1987)
[23] Philip, J. R. and Wooding, R. A. Solution of the Poisson-Boltzmann equation about a cylindrical particle. Journal of Chemical Physics, 52, 953-959 (1970)
[24] Liu, X. L., Jiang, M., Yang, P., and Kaneta, M. Non-Newtonian thermal analyses of point EHL contacts using the Eyring model. ASME Journal of Tribology, 127, 70-81 (2005)
[25] Bosse, M. A., Araya, H., Troncoso, S. A., and Arce, P. E., Batch electrophoretic cells with Eyring fluids: analysis of the hydrodynamics. Electrophoresis, 23, 2149-2156 (2002) |