Applied Mathematics and Mechanics (English Edition) ›› 2021, Vol. 42 ›› Issue (10): 1511-1524.doi: https://doi.org/10.1007/s10483-021-2781-7
• Articles • Previous Articles Next Articles
N. A. ZAINAL1,2, R. NAZAR1, K. NAGANTHRAN1, I. POP3
Received:
2021-06-17
Revised:
2021-08-14
Published:
2021-09-23
Contact:
R. NAZAR, E-mail:rmn@ukm.edu.my
Supported by:
2010 MSC Number:
N. A. ZAINAL, R. NAZAR, K. NAGANTHRAN, I. POP. Unsteady flow of a Maxwell hybrid nanofluid past a stretching/shrinking surface with thermal radiation effect. Applied Mathematics and Mechanics (English Edition), 2021, 42(10): 1511-1524.
[1] MAXWELL, J. On the dynamical theory of gases. Philosophical Transactions of the Royal Society of London, 157, 49-88(1867) [2] HEYHAT, M. M. and KHABAZI, N. Non-isothermal flow of Maxwell fluids above fixed flat plates under the influence of a transverse magnetic field. Proceedings of the Institution of Mechanical Engineers, Part C:Journal of Mechanical Engineering Science, 225, 909-916(2011) [3] WANG, S. and TAN, W. Stability analysis of Soret-driven double-diffusive convection of Maxwell fluid in a porous medium. International Journal of Heat and Fluid Flow, 32, 88-94(2011) [4] NADEEM, S., HAQ, R. U., and KHAN, Z. H. Numerical study of MHD boundary layer flow of a Maxwell fluid past a stretching sheet in the presence of nanoparticles. Journal of the Taiwan Institute of Chemical Engineers, 45, 121-126(2014) [5] BINETTI, L., STANKIEWICZ, A., and ALWIS, L. Measurement of viscoelasticity of sodium alginate by fibre Bragg grating. Multidisciplinary Digital Publishing Institute Proceedings, 15, 33(2019) [6] PAWAR, S. S. and SUNNAPWAR, V. K. Experimental studies on heat transfer to Newtonian and non-Newtonian fluids in helical coils with laminar and turbulent flow. Experimental Thermal and Fluid Science, 44, 792-804(2013) [7] KUMAR, S., BHANJANA, G., SHARMA, A., SIDHU, M. C., and DILBAGHI, N. Synthesis, characterization and on-field evaluation of pesticide loaded sodium alginate nanoparticles. Carbohydrate Polymers, 101, 1061-1067(2014) [8] FAYAZ, M. A., BALAJI, K., GIRILAL, M., KALAICHELVAN, P. T., and VENKATESAN, R. Mycobased synthesis of silver nanoparticles and their incorporation into sodium alginate films for vegetable and fruit preservation. Journal of Agricultural and Food Chemistry, 57, 6246-6252(2009) [9] BAHIRAEI, M., GODINI, A., and SHAHSAVAR, A. Thermal and hydraulic characteristics of a mini channel heat exchanger operated with a non-Newtonian hybrid nanofluid. Journal of the Taiwan Institute of Chemical Engineers, 84, 149-161(2018) [10] AL-RASHED, A. A. A. A., SHAHSAVAR, A., ENTEZARI, S., MOGHIMI, M. A., ADIO, S. A., and NGUYEN, T. K. Numerical investigation of non-Newtonian water-CMC/CuO nanofluid flow in an offset strip-fin microchannel heat sink:thermal performance and thermodynamic considerations. Applied Thermal Engineering, 155, 247-258(2019) [11] NAGANTHRAN, K., NAZAR, R., and POP, I. Effects of heat generation/absorption in the Jeffrey fluid past a permeable stretching/shrinking disc. Journal of the Brazilian Society of Mechanical Sciences and Engineering, 41, 414(2019) [12] ESFE, M. H. On the evaluation of the dynamic viscosity of non-Newtonian oil based nanofluids:experimental investigation, predicting, and data assessment. Journal of Thermal Analysis and Calorimetry, 135, 97-109(2019) [13] NAGANTHRAN, K., NAZAR, R., and POP, I. Unsteady stagnation-point flow and heat transfer of a special third grade fluid past a permeable stretching/shrinking sheet. Scientific Reports, 6, 24632(2016) [14] EL-ZAHAR, E. R., RASHAD, A. M., SAAD, W., and SEDDEK, L. F. Magneto-hybrid nanofluids flow via mixed convection past a radiative circular cylinder. Scientific Reports, 10, 10494(2020) [15] RASHAD, A. M., CHAMKHA, A. J., ISMAEL, M. A., and SALAH, T. Magnetohydrodynamics natural convection in a triangular cavity filled with a Cu-Al2O3/water hybrid nanofluid with localized heating from below and internal heat generation. Journal of Heat Transfer, 140, 072502(2018) [16] GORLA, R. S. R., SIDDIQA, S. M., MANSOUR, M. A., RASHAD, A. M., and SALAH, T. Heat source/sink effects on natural convection of a hybrid nanofluid-filled porous cavity. Journal of Thermophysics and Heat Transfer, 31, 847-857(2017) [17] NAYAK, M. K., AKBAR, N. S., PANDEY, V. S., KHAN, Z. H., and TRIPATHI, D. 3D free convective MHD flow of nanofluid over permeable linear stretching sheet with thermal radiation. Powder Technology, 315, 205-215(2017) [18] ZAINAL, N. A., NAZAR, R., NAGANTHRAN, K., and POP, I. MHD flow and heat transfer of hybrid nanofluid over a permeable moving surface in the presence of thermal radiation. International Journal of Numerical Methods for Heat and Fluid Flow, 31, 858-879(2021) [19] CESS, R. D. The interaction of thermal radiation with free convection heat transfer. International Journal of Heat and Mass Transfer, 9, 1269-1277(1966) [20] ARPACI, V. S. Effect of thermal radiation on the laminar free convection from a heated vertical plate. International Journal of Heat and Mass Transfer, 11, 871-881(1968) [21] AGBAJE, T. M., MONDAL, S., MOTSA, S. S., and SIBANDA, P. A numerical study of unsteady non-Newtonian Powell-Eyring nanofluid flow over a shrinking sheet with heat generation and thermal radiation. Alexandria Engineering Journal, 56, 81-91(2017) [22] TAKABI, B. and SALEHI, S. Augmentation of the heat transfer performance of a sinusoidal corrugated enclosure by employing hybrid nanofluid. Advances in Mechanical Engineering, 6, 147059(2014) [23] GHALAMBAZ, M., ROŞCA, N. C., ROŞCA, A. V., and POP, I. Mixed convection and stability analysis of stagnation-point boundary layer flow and heat transfer of hybrid nanofluids over a vertical plate. International Journal of Numerical Methods for Heat and Fluid Flow, 30, 3737-3754(2020) [24] ANUAR, N. S. and BACHOK, N. Double solutions and stability analysis of micropolar hybrid nanofluid with thermal radiation impact on unsteady stagnation point flow. Mathematics, 9, 276(2021) [25] KHASHI'IE, N. S., ARIFIN, N. M., POP, I., NAZAR, R., and HAFIDZUDDIN, E. H. A new similarity solution with stability analysis for the three-dimensional boundary layer of hybrid nanofluids. International Journal of Numerical Methods for Heat and Fluid Flow, 31, 809-828(2021) [26] WAINI, I., ISHAK, A., and POP, I. Agrawal flow of a hybrid nanofluid over a shrinking disk. Case Studies in Thermal Engineering, 25, 100950(2021) [27] KOPLIK, J. and BANAVAR, J. R. The no-slip condition for a mixture of two liquids. Physical Review Letters, 80, 5125-5128(1998) [28] MAY, S. E. and MAHER, J. V. Capillary-wave relaxation for a meniscus between miscible liquids. Physical Review Letters, 67, 2013-2016(1991) [29] MADHU, M., KISHAN, N., and CHAMKHA, A. J. Unsteady flow of a Maxwell nanofluid over a stretching surface in the presence of magnetohydrodynamic and thermal radiation effects. Propulsion and Power Research, 6, 31-40(2017) [30] OZTOP, H. F. and ABU-NADA, E. Numerical study of natural convection in partially heated rectangular enclosures filled with nanofluids. International Journal of Numerical Methods for Heat and Fluid Flow, 29, 1326-1336(2008) [31] ROSSELAND, S. Theoretical Astrophysics, Oxford University Press, Oxford (1936) [32] WAINI, I., ISHAK, A., and POP, I. Flow and heat transfer of a hybrid nanofluid past a permeable moving surface. Chinese Journal of Physics, 66, 606-619(2020) [33] WAINI, I., ISHAK, A., and POP, I. Hybrid nanofluid flow on a shrinking cylinder with prescribed surface heat flux. International Journal of Numerical Methods for Heat and Fluid Flow, 31, 1987-2004(2020) [34] KHASHI'IE, N. S., ARIFIN, N. M., POP, I., and NAZAR, R. Melting heat transfer in hybrid nanofluid flow along a moving surface. Journal of Thermal Analysis and Calorimetry (2020) https://doi.org/10.1007/s10973-020-10238-4 [35] MERKIN, J. H. Natural convective boundary-layer flow in a heat-generating porous medium with a prescribed wall heat flux. Zeitschrift für Angewandte Mathematik und Physik, 60, 543-564(2009) [36] MERRILL, K., BEAUCHESNE, M., PREVITE, J., PAULLET, J., and WEIDMAN, P. Final steady flow near a stagnation point on a vertical surface in a porous medium. International Journal of Heat and Mass Transfer, 49, 4681-4686(2006) [37] ZAINAL, N. A., NAZAR, R., NAGANTHRAN, K., and POP, I. Unsteady three-dimensional MHD non-axisymmetric Homann stagnation point flow of a hybrid nanofluid with stability analysis. Mathematics, 8, 784(2020) [38] ZAINAL, N. A., NAZAR, R., NAGANTHRAN, K., and POP, I. Unsteady EMHD stagnation point flow over a stretching/shrinking sheet in a hybrid Al2O3-Cu/H2O nanofluid. International Communications in Heat Mass Transfer, 123, 105205(2021) [39] WEIDMAN, P. D., KUBITSCHEK, D. G., and DAVIS, A. M. J. The effect of transpiration on self-similar boundary layer flow over moving surfaces. International Journal of Engineering Science, 44, 730-737(2006) [40] HARRIS, S. D., INGHAM, D. B., and POP, I. Mixed convection boundary-layer flow near the stagnation point on a vertical surface in a porous medium:Brinkman model with slip. Transport in Porous Media, 77, 267-285(2009) [41] SHAMPINE, L. F., GLADWELL, I., and THOMPSON, S. Solving ODEs with MATLAB, Cambridge University Press, Cambridge (2003) [42] SHARIDAN, S., MAHMOOD, T., and POP, I. Similarity solutions for the unsteady boundary layer flow and heat transfer due to a stretching sheet. Applied Mechanics and Engineering, 11, 647-654(2006) [43] CHAMKHA, A., ALY, A., and MANSOUR, M. Similarity solution for unsteady heat and mass transfer from a stretching surface embedded in a porous medium with suction/injection and chemical reaction effects. Chemical Engineering Communications, 197, 846-858(2010) [44] USMAN, M., HAMID, M., ZUBAIR, T., UL-HAQ, R., and WANG, W. Cu-Al2O3/water hybrid nanofluid through a permeable surface in the presence of nonlinear radiation and variable thermal conductivity via LSM. International Journal of Heat and Mass Transfer, 126, 1347-1356(2018) |
[1] | C. G. PAVITHRA, B. J. GIREESHA, M. L. KEERTHI. Semi-analytical investigation of heat transfer in a porous convective radiative moving longitudinal fin exposed to magnetic field in the presence of a shape-dependent trihybrid nanofluid [J]. Applied Mathematics and Mechanics (English Edition), 2024, 45(1): 197-216. |
[2] | B. K. SHARMA, R. GANDHI, T. ABBAS, M. M. BHATTI. Magnetohydrodynamics hemodynamics hybrid nanofluid flow through inclined stenotic artery [J]. Applied Mathematics and Mechanics (English Edition), 2023, 44(3): 459-476. |
[3] | A. M. ALSHARIF, A. I. ABDELLATEEF, Y. A. ELMABOUD, S. I. ABDELSALAM. Performance enhancement of a DC-operated micropump with electroosmosis in a hybrid nanofluid: fractional Cattaneo heat flux problem [J]. Applied Mathematics and Mechanics (English Edition), 2022, 43(6): 931-944. |
[4] | N. A. ZAINAL, R. NAZAR, K. NAGANTHRAN, I. POP. Slip effects on unsteady mixed convection of hybrid nanofluid flow near the stagnation point [J]. Applied Mathematics and Mechanics (English Edition), 2022, 43(4): 547-556. |
[5] | S. HUSSAIN, T. TAYEBI, T. ARMAGHANI, A. M. RASHAD, H. A. NABWEY. Conjugate natural convection of non-Newtonian hybrid nanofluid in wavy-shaped enclosure [J]. Applied Mathematics and Mechanics (English Edition), 2022, 43(3): 447-466. |
[6] | I. WAINI, A. ISHAK, I. POP. Magnetohydrodynamic flow past a shrinking vertical sheet in a dusty hybrid nanofluid with thermal radiation [J]. Applied Mathematics and Mechanics (English Edition), 2022, 43(1): 127-140. |
[7] | Hang XU. Mixed convective flow of a hybrid nanofluid between two parallel inclined plates under wall-slip condition [J]. Applied Mathematics and Mechanics (English Edition), 2022, 43(1): 113-126. |
[8] | Tiehong ZHAO, M. R. KHAN, Yuming CHU, A. ISSAKHOV, R. ALI, S. KHAN. Entropy generation approach with heat and mass transfer in magnetohydrodynamic stagnation point flow of a tangent hyperbolic nanofluid [J]. Applied Mathematics and Mechanics (English Edition), 2021, 42(8): 1205-1218. |
[9] | J. K. MADHUKESH, G. K. RAMESH, B. C. PRASANNAKUMARA, S. A. SHEHZAD, F. M. ABBASI. Bio-Marangoni convection flow of Casson nanoliquid through a porous medium in the presence of chemically reactive activation energy [J]. Applied Mathematics and Mechanics (English Edition), 2021, 42(8): 1191-1204. |
[10] | H. B. LANJWANI, M. S. CHANDIO, M. I. ANWAR, S. A. SHEHZAD, M. IZADI. Dual solutions of time-dependent magnetohydrodynamic stagnation point boundary layer micropolar nanofluid flow over shrinking/stretching surface [J]. Applied Mathematics and Mechanics (English Edition), 2021, 42(7): 1013-1028. |
[11] | Jie SU, Hongxia SONG, Liaoliang KE, S. M. AIZIKOVICH. The size-dependent elastohydrodynamic lubrication contact of a coated half-plane with non-Newtonian fluid [J]. Applied Mathematics and Mechanics (English Edition), 2021, 42(7): 915-930. |
[12] | T. MUSHTAQ, A. RAUF, S. A. SHEHZAD, F. MUSTAFA, M. HANIF, Z. ABBAS. Numerical and statistical approach for Casson-Maxwell nanofluid flow with Cattaneo-Christov theory [J]. Applied Mathematics and Mechanics (English Edition), 2021, 42(7): 1063-1076. |
[13] | K. RAMESH, M. G. REDDY, B. SOUAYEH. Electro-magneto-hydrodynamic flow of couple stress nanofluids in micro-peristaltic channel with slip and convective conditions [J]. Applied Mathematics and Mechanics (English Edition), 2021, 42(4): 593-606. |
[14] | Yuming CHU, M. I. KHAN, M. I. U. REHMAN, S. KADRY, S. QAYYUM, M. WAQAS. Stability analysis and modeling for the three-dimensional Darcy-Forchheimer stagnation point nanofluid flow towards a moving surface [J]. Applied Mathematics and Mechanics (English Edition), 2021, 42(3): 357-370. |
[15] | J. MACKOLIL, B. MAHANTHESH. Optimization of heat transfer in the thermal Marangoni convective flow of a hybrid nanomaterial with sensitivity analysis [J]. Applied Mathematics and Mechanics (English Edition), 2021, 42(11): 1663-1674. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||