Applied Mathematics and Mechanics (English Edition) ›› 2025, Vol. 46 ›› Issue (2): 305-322.doi: https://doi.org/10.1007/s10483-025-3216-7
Previous Articles Next Articles
Yuxin HAO1,†(), Lei SUN1, Wei ZHANG2, Han LI1
Received:
2024-09-13
Revised:
2024-12-08
Online:
2025-02-03
Published:
2025-02-02
Contact:
Yuxin HAO, E-mail: bimhao@163.comSupported by:
2010 MSC Number:
Yuxin HAO, Lei SUN, Wei ZHANG, Han LI. Active traveling wave vibration control of elastic supported conical shells with smart micro fiber composites based on the differential quadrature method. Applied Mathematics and Mechanics (English Edition), 2025, 46(2): 305-322.
Table 1
Frequency parameters of CSs with CC, CF, and CS boundaries"
CC | CF | CS | |||||||
---|---|---|---|---|---|---|---|---|---|
Present | Ref. [ | Error/% | Present | Ref. [ | Error/% | Present | Ref. [ | Error/% | |
0 | 1.002 5 | 1.003 0 | 0.05 | 0.831 0 | 0.831 2 | 0.02 | 0.831 0 | 0.831 2 | 0.02 |
1 | 0.964 6 | 0.965 1 | 0.05 | 0.676 7 | 0.676 8 | 0.01 | 0.676 7 | 0.676 8 | 0.01 |
2 | 0.875 3 | 0.875 9 | 0.07 | 0.483 0 | 0.483 1 | 0.02 | 0.483 0 | 0.483 1 | 0.02 |
3 | 0.776 3 | 0.777 0 | 0.09 | 0.355 1 | 0.355 3 | 0.07 | 0.355 1 | 0.355 3 | 0.07 |
4 | 0.691 3 | 0.692 6 | 0.18 | 0.274 8 | 0.275 1 | 0.12 | 0.274 8 | 0.275 1 | 0.12 |
5 | 0.627 9 | 0.629 2 | 0.20 | 0.228 5 | 0.229 0 | 0.24 | 0.228 5 | 0.229 0 | 0.24 |
6 | 0.586 9 | 0.588 5 | 0.27 | 0.210 8 | 0.211 5 | 0.32 | 0.210 8 | 0.211 5 | 0.32 |
7 | 0.567 6 | 0.569 6 | 0.36 | 0.218 7 | 0.219 5 | 0.38 | 0.218 7 | 0.219 5 | 0.38 |
8 | 0.568 7 | 0.571 2 | 0.44 | 0.247 0 | 0.248 0 | 0.42 | 0.247 0 | 0.248 0 | 0.42 |
9 | 0.588 9 | 0.591 9 | 0.51 | 0.290 2 | 0.291 4 | 0.40 | 0.290 2 | 0.291 4 | 0.40 |
Table 2
Comparison of natural frequencies of CC rotational cylindrical shell"
Ref. [ | Present | Error/% | Ref. [ | Present | Error/% | ||
---|---|---|---|---|---|---|---|
0.005 0 | 2 | 0.062 15 | 0.062 16 | 0.010 | 0.054 60 | 0.054 16 | 0.81 |
3 | 0.116 53 | 0.116 52 | 0.001 | 0.110 58 | 0.110 20 | 0.34 | |
4 | 0.214 87 | 0.214 86 | 0.001 | 0.210 18 | 0.208 73 | 0.69 | |
5 | 0.343 81 | 0.343 85 | 0.010 | 0.339 97 | 0.336 22 | 1.11 |
[1] | PARVEZ, M. T. and KHAN, A. H. Influence of geometric imperfections on the nonlinear forced vibration characteristics and stability of laminated angle-ply composite conical shells. Composite Structures, 291, 115555 (2022) |
[2] | AMABILI, M. and BALASUBRAMANIAN, P. Nonlinear forced vibrations of laminated composite conical shells by using a refined shear deformation theory. Composite Structures, 249, 112522 (2020) |
[3] | ABOLHASSANPOUR, H., SHAHGHOLI, M., GHASEMI, F. A., and MOHAMADI, A. Nonlinear vibration analysis of an axially moving thin-walled conical shell. International Journal of Non-Linear Mechanics, 134, 103747 (2021) |
[4] | ZHUO, X., XU, P. Y., LI, H., CHU, C., SUN, P. Y., GU, D. W., and WEN, B. C. The analysis of nonlinear vibration characteristics of fiber-reinforced composite thin wall truncated conical shell: theoretical and experimental investigation. European Journal of Mechanics-A/Solids, 105, 105268 (2024) |
[5] | YANG, S. W., HAO, Y. X., YANG, L., and LIU, L. T. Nonlinear vibrations and chaotic phenomena of functionally graded material truncated conical shell subject to aerodynamic andin-plane loads under 1:2 internal resonance relation. Archive of Applied Mechanics, 91, 883–917 (2021) |
[6] | KIANI, Y. Torsional vibration of functionally graded carbon nanotube reinforced conical shells. Science and Engineering of Composite Materials, 25(1), 41–52 (2018) |
[7] | KIANI, Y. Analysis of FG-CNT reinforced composite conical panel subjected to moving load using Ritz method. Thin-Walled Structures, 119, 47–57 (2017) |
[8] | ZHANG, Y. and LIU, W. Nonlinear vibration response of a functionally graded carbon nanotube-reinforced composite conical shell using a stress function method. Acta Mechanica, 233(8), 3157–3174 (2022) |
[9] | HAO, Y. X., WANG, M. X., ZHANG, W., YANG, S. W., LIU, L. T., and QIAN, Y. H. Bending-torsion coupling bursting oscillation of a sandwich conical panel under parametric excitation. Journal of Sound and Vibration, 495, 115904 (2021) |
[10] | DUC, N. D., CONG, P. H., ANH, V. M., QUANG, V. D., TRAN, P., TUAN, N. D., and THINH, N. H. Mechanical and thermal stability of eccentrically stiffened functionally graded conical shell panels resting on elastic foundations and in thermal environment. Composite Structures, 132, 597–609 (2015) |
[11] | ZAREI, M., RAHIMI, G. H., and HEMMATNEZHAD, M. Free vibrational characteristics of grid-stiffened truncated composite conical shells. Aerospace Science and Technology, 99, 105717 (2020) |
[12] | DINH, D. N. and NGUYEN, P. D. The dynamic response and vibration of functionally graded carbon nanotube-reinforced composite (FG-CNTRC) truncated conical shells resting on elastic foundations. Materials, 10(10), 1194 (2017) |
[13] | DAS, A., ROUT, M., and KARMAKAR, A. Time dependent response of impact induced functionally graded conical shell considering porosity. Sādhanā: Academy Proceedings in Engineering Sciences, 45(1), 219 (2020) |
[14] | JAFARI, M. H. A., ZARASTVAND, M., and ZHOU, J. H. Doubly curved truss core composite shell system for broadband diffuse acoustic insulation. Journal of Vibration and Control, 30(17-18), 4035–4051 (2024) |
[15] | TALEBITOOTI, R., ZARASTVAND, M. R., and GHEIBI, M. R. Acoustic transmission through laminated composite cylindrical shell employing third order shear deformation theory in the presence of subsonic flow. Composite Structures, 157, 95–110 (2016) |
[16] | NIASAR, M. J., RAHAGHI, M. I., and JAFARI, A. A. Optimal location of FG actuator/sensor patches on an FG rotating conical shell for active control of vibration. Acta Mechanica, 233(12), 5335–5357 (2022) |
[17] | JAMSHIDI, R. and JAFARI, A. Conical shell vibration optimal control with distributed piezoelectric sensor and actuator layers. ISA Transactions, 117, 96–117 (2021) |
[18] | HAO, Y. X., LI, H., ZHANG, W., GE, X. S., YANG, S. W., and CAO, Y. T. Active vibration control of smart porous conical shell with elastic boundary under impact loadings using GDQM and IQM. Thin-Walled Structures, 175, 109232 (2022) |
[19] | KUMAR, A. and RAY, M. C. Control of smart rotating laminated composite truncated conical shell using ACLD treatment. International Journal of Mechanical Sciences, 89, 123–141 (2014) |
[20] | WANG, W. Y. Modeling and optimal vibration control of conical shell with piezoelectric actuators. High Technology Letters, 14(4), 418–422 (2008) |
[21] | JAMSHIDI, R. and JAFARI, A. A. Nonlinear vibration of conical shell with a piezoelectric sensor patch and a piezoelectric actuator patch. Journal of Vibration and Control, 28(11-12), 1502–1519 (2022) |
[22] | ZOU, H. S., WANG, D. W., and CHAI, W. K. Control of conical shells laminated with full and diagonal actuators. International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, American Society of Mechanical Engineers, 417-425 (2001) |
[23] | GOLZARI, M. and JAFARI, A. A. Effect of poroelastic material on vibroacoustic behavior of truncated conical shells. Aerospace Science and Technology, 118, 106982 (2021) |
[24] | LONG, S. B., HUANG, W. C., WANG, J. H., LIU, J. R., GU, Y. X., and WANG, Z. A fixed-time consensus control with prescribed performance for multi-agent systems under full-state constraints. IEEE Transactions on Automation Science and Engineering (2024) https://doi.org/10.1109/TASE.2024.3445135 |
[25] | ZHANG, S., LIU, L., ZHANG, X., ZHOU, Y., and YANG, Q. Active vibration control for ship pipeline system based on PI-LQR state feedback. Ocean Engineering, 310, 118559 (2024) |
[26] | WANG, J., WU, Y., CHEN, C. P., LIU, Z., and WU, W. Adaptive PI event-triggered control for MIMO nonlinear systems with input delay. Information Sciences, 677, 120817 (2024) |
[27] | TAN, J., ZHANG, K., LI, B., and WU, A. G. Event-triggered sliding mode control for spacecraft reorientation with multiple attitude constraints. IEEE Transactions on Aerospace and Electronic Systems, 59(5), 6031–6043 (2023) |
[28] | GUAN, T., LI, B., SONG, Y., and DUAN, G. R. Fixed-time spacecraft attitude control with unwinding-free performance. IEEE Transactions on Automatic Control (2024) https://doi.org/10.1109/TAC.2024.3471333 |
[29] | LAN, Y. H. and ZHAO, J. Y. Improving track performance by combining Padé-approximation-based preview repetitive control and equivalent-input-disturbance. Journal of Electrical Engineering and Technology, 19, 3781–3794 (2024) |
[30] | XU, X. and LI, B. PDE-based observation and predictor-based control for linear systems with distributed infinite input and output delays. Automatica, 170, 111845 (2024) |
[31] | ZHAO, J., XIE, F., WANG, A., SHUAI, C., TANG, J., and WANG, Q. A unified solution for the vibration analysis of functionally graded porous (FGP) shallow shells with general boundary conditions. Composites Part B: Engineering, 156, 406–424 (2019) |
[32] | LI, H., HAO, Y. X., ZHANG, W., LIU, L. T., YANG, S. W., and WANG, D. M. Vibration analysis of porous metal foam truncated conical shells with general boundary conditions using GDQ. Composite Structures, 269, 114036 (2021) |
[33] | LI, H., ZHANG, W., ZHANG, Y. F., and JIANG, Y. Nonlinear vibrations of graphene-reinforced porous rotating conical shell with arbitrary boundary conditions using traveling wave vibration analysis. Nonlinear Dynamics, 112(6), 4363–4391 (2024) |
[34] | SABOORI, R. and GHADIRI, M. Nonlinear forced vibration analysis of PFG-GPLRC conical shells under parametric excitation considering internal and external resonances. Thin-Walled Structures, 196, 111474 (2024) |
[35] | HAO, Y. X., LI, H., ZHANG, W., GU, X. J., and YANG, S. W. Nonlinear vibration of porous truncated conical shell under unified boundary condition and mechanical load. Thin-Walled Structures, 195, 111355 (2024) |
[36] | DING, H. X. and SHE, G. L. Nonlinear primary resonance behavior of graphene platelet-reinforced metal foams conical shells under axial motion. Nonlinear Dynamics, 111(15), 13723–13752 (2023) |
[37] | ZHU, C., FANG, X., LIU, J., and NIE, G. Smart control of large amplitude vibration of porous piezoelectric conical sandwich panels resting on nonlinear elastic foundation. Composite Structures, 246, 112384 (2020) |
[38] | LI, H., HAO, Y. X., ZHANG, W., LIU, L. T., YANG, S. W., and CAO, Y. T. Natural vibration of an elastically supported porous truncated joined conical-conical shells using artificial spring technology and generalized differential quadrature method. Aerospace Science and Technology, 121, 107385 (2022) |
[39] | SUN, L., HAO, Y. X., ZHANG, W., and LI, H. Traveling wave vibration and critical rotating speed of rotating porous metal conical shell with elastic boundary conditions. Aerospace Science and Technology, 148, 109091 (2024) |
[40] | JAMSHIDI, R. and JAFARI, A. A. Conical shell vibration control with distributed piezoelectric sensor and actuator layer. Composite Structures, 256, 113107 (2021) |
[41] | IRIE, T. Natural frequencies of truncated conical shells. Journal of Sound and Vibration, 92(3), 447 (1984) |
[42] | SUN, S., CAO, D., and HAN, Q. Vibration studies of rotating cylindrical shells with arbitrary edges using characteristic orthogonal polynomials in the Rayleigh-Ritz method. International Journal of Mechanical Sciences, 68, 180–189 (2013) |
[43] | HAO, Y. X., CAO, J., and ZHANG, W. Active vibration control and optimal position of MFC actuator for the bistable laminates with four points simply support. Archive of Applied Mechanics, 94, 3825–3847 (2024) |
[1] | Jie CHEN, Xinyue ZHANG, Mingyang FAN. Dynamic behaviors of graphene platelets-reinforced metal foam piezoelectric beams with velocity feedback control [J]. Applied Mathematics and Mechanics (English Edition), 2025, 46(1): 63-80. |
[2] | H.M. FEIZABAD, M.H. YAS. Free vibration and buckling analysis of polymeric composite beams reinforced by functionally graded bamboo fibers [J]. Applied Mathematics and Mechanics (English Edition), 2024, 45(3): 543-562. |
[3] | Zhi LI, Cuiying FAN, Mingkai GUO, Guoshuai QIN, Chunsheng LU, Dongying LIU, Minghao ZHAO. Natural frequency analysis of laminated piezoelectric beams with arbitrary polarization directions [J]. Applied Mathematics and Mechanics (English Edition), 2024, 45(11): 1949-1964. |
[4] | Pei ZHANG, P. SCHIAVONE, Hai QING. Dynamic stability analysis of porous functionally graded beams under hygro-thermal loading using nonlocal strain gradient integral model [J]. Applied Mathematics and Mechanics (English Edition), 2023, 44(12): 2071-2092. |
[5] | Luke ZHAO, Feng JIN, Zhushan SHAO, Wenjun WANG. Nonlinear analysis on electrical properties in a bended composite piezoelectric semiconductor beam [J]. Applied Mathematics and Mechanics (English Edition), 2023, 44(12): 2039-2056. |
[6] | Pei ZHANG, P. SCHIAVONE, Hai QING. Unified two-phase nonlocal formulation for vibration of functionally graded beams resting on nonlocal viscoelastic Winkler-Pasternak foundation [J]. Applied Mathematics and Mechanics (English Edition), 2023, 44(1): 89-108. |
[7] | Hai QING. Well-posedness of two-phase local/nonlocal integral polar models for consistent axisymmetric bending of circular microplates [J]. Applied Mathematics and Mechanics (English Edition), 2022, 43(5): 637-652. |
[8] | Ye TANG, Jiye XU, Tianzhi YANG. Natural dynamic characteristics of a circular cylindrical Timoshenko tube made of three-directional functionally graded material [J]. Applied Mathematics and Mechanics (English Edition), 2022, 43(4): 479-496. |
[9] | Runqing CAO, Zhijian WANG, Jian ZANG, Yewei ZHANG. Resonance response of fluid-conveying pipe with asymmetric elastic supports coupled to lever-type nonlinear energy sink [J]. Applied Mathematics and Mechanics (English Edition), 2022, 43(12): 1873-1886. |
[10] | Pei ZHANG, Hai QING. On well-posedness of two-phase nonlocal integral models for higher-order refined shear deformation beams [J]. Applied Mathematics and Mechanics (English Edition), 2021, 42(7): 931-950. |
[11] | Yanming REN, Hai QING. On the consistency of two-phase local/nonlocal piezoelectric integral model [J]. Applied Mathematics and Mechanics (English Edition), 2021, 42(11): 1581-1598. |
[12] | Yingjie WANG, Qichang ZHANG, Wei WANG, Tianzhi YANG. In-plane dynamics of a fluid-conveying corrugated pipe supported at both ends [J]. Applied Mathematics and Mechanics (English Edition), 2019, 40(8): 1119-1134. |
[13] | Qiang LYU, Jingjing LI, Nenghui ZHANG. Quasi-static and dynamical analyses of a thermoviscoelastic Timoshenko beam using the differential quadrature method [J]. Applied Mathematics and Mechanics (English Edition), 2019, 40(4): 549-562. |
[14] | Bo WANG. Effect of rotary inertia on stability of axially accelerating viscoelastic Rayleigh beams [J]. Applied Mathematics and Mechanics (English Edition), 2018, 39(5): 717-732. |
[15] | A. MEHDITABAR, G. H. RAHIMI, S. ANSARI SADRABADI. Three-dimensional magneto-thermo-elastic analysis of functionally graded cylindrical shell [J]. Applied Mathematics and Mechanics (English Edition), 2017, 38(4): 479-494. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||