Applied Mathematics and Mechanics (English Edition) ›› 2025, Vol. 46 ›› Issue (8): 1609-1630.doi: https://doi.org/10.1007/s10483-025-3278-9
A. N. MALLIKARJUNA1, S. K. ABHILASHA1, R. S. VARUN KUMAR2, F. GAMAOUN3, B. C. PRASANNAKUMARA1,†()
Received:
2025-03-13
Revised:
2025-06-06
Published:
2025-07-28
Contact:
B. C. PRASANNAKUMARA, E-mail: prasannakumarabc@davangereuniversity.ac.in2010 MSC Number:
A. N. MALLIKARJUNA, S. K. ABHILASHA, R. S. VARUN KUMAR, F. GAMAOUN, B. C. PRASANNAKUMARA. Optimizing the cooling efficiency of a convex spine fin with wetted characteristics beneficial in automotive components: an execution of Charlier polynomial collocation method. Applied Mathematics and Mechanics (English Edition), 2025, 46(8): 1609-1630.
Table 1
Comparative analysis of the heat transfer rate QS‐OMCCM and the efficiency ηS‐OMCCM of the spine using the OMCCM for various values of λ with an absolute error evaluation"
Exact solution | OMCCM result | Absolute error | ||||
---|---|---|---|---|---|---|
0 | 2.072 319 58 | 0.414 463 92 | 2.073 294 71 | 0.414 658 94 | ||
0.5 | 2.185 353 35 | 0.397 336 97 | 2.186 083 86 | 0.397 469 79 | ||
2.0 | 2.493 965 47 | 0.356 280 78 | 2.494 110 87 | 0.356 301 55 | ||
3.0 | 2.680 126 54 | 0.335 015 82 | 2.680 044 23 | 0.335 005 53 | ||
10 | 3.734 629 91 | 0.248 975 33 | 3.737 369 39 | 0.249 157 96 |
Table 2
Comparative analysis of the heat transfer rate QS‐OMCCM and the efficiency ηS‐OMCCM of the spine using the OMCCM for various values of Nc with an absolute error evaluation"
Exact solution | OMCCM result | Absolute error | ||||
---|---|---|---|---|---|---|
1 | 1.193 575 98 | 0.596 787 99 | 1.195 588 54 | 0.597 794 27 | ||
2 | 1.540 269 93 | 0.513 423 31 | 1.542 192 61 | 0.514 064 20 | ||
6 | 2.493 965 47 | 0.356 280 78 | 2.494 110 87 | 0.356 301 55 | ||
8 | 2.854 280 86 | 0.317 142 32 | 2.854 117 83 | 0.317 124 20 | ||
12 | 3.465 617 64 | 0.266 585 97 | 3.466 712 77 | 0.266 670 21 |
[1] | BUONOMO, B., CASCETTA, F., MANCA, O., and SHEREMET, M. Heat transfer analysis of rectangular porous fins in local thermal non-equilibrium model. Applied Thermal Engineering, 195, 117237 (2021) |
[2] | ESLAMI, M., KHOSRAVI, F., and FALLAH KOHAN, H. R. Effects of fin parameters on performance of latent heat thermal energy storage systems: a comprehensive review. Sustainable Energy Technologies and Assessments, 47, 101449 (2021) |
[3] | CHEN, H. T., HSU, M. H., HUANG, Y. C., and CHANG, K. H. Experimental and numerical study of inverse natural convection-conduction heat transfer in a cavity with a fin. Numerical Heat Transfer, Part A: Applications, 84, 641–658 (2023) |
[4] | ZHANG, S., MANCIN, S., and PU, L. A review and prospective of fin design to improve heat transfer performance of latent thermal energy storage. Journal of Energy Storage, 62, 106825 (2023) |
[5] | CHANDAN, K., KARTHIK, K., NAGARAJA, K. V., PRASANNAKUMARA, B. C., VARUN KUMAR, R. S., and MUHAMMAD, T. Radiative heat transfer analysis of a concave porous fin under the local thermal non-equilibrium condition: application of the clique polynomial method and physics-informed neural networks. Applied Mathematics and Mechanics (English Edition), 45(9), 1613–1632 (2024) https://doi.org/10.1007/s10483-024-3143-6 |
[6] | DAS, R. and KUNDU, B. New forward and inverse solutions for wet fins generalized profiles with all nonlinear phenomena. Journal of Heat Transfer, 143, 021401 (2021) |
[7] | PIROMPUGD, W. and WONGWISES, S. Analytical methods for the efficiency of annular fins with rectangular and hyperbolic profiles under partially wet surface conditions. Numerical Heat Transfer, Part A: Applications, 80, 617–634 (2021) |
[8] | ZHAO, C., WANG, J., SUN, Y., HE, S., and HOOMAN, K. Fin design optimization to enhance PCM melting rate inside a rectangular enclosure. Applied Energy, 321, 119368 (2022) |
[9] | EJAZ, F., QASEM, N. A. A., and ZUBAIR, S. M. Thermal-hydraulic performance evaluation of airside of wavy fin compact heat exchangers under wet conditions. International Communications in Heat and Mass Transfer, 156, 107685 (2024) |
[10] | PAVITHRA, C. G., GIREESHA, B. J., SUSHMA, S., and GOWTHAM, K. J. Analysis of convective-radiative heat transfer in dovetail longitudinal fins with shape-dependent hybrid nanofluids: a study using the Hermite wavelet method. Applied Mathematics and Mechanics (English Edition), 46(2), 357–372 (2025) https://doi.org/10.1007/s10483-025-3218-9 |
[11] | FALLO, N., MOITSHEKI, R. J., and MAKINDE, O. D. Analysis of heat transfer in a cylindrical spine fin with variable thermal properties. Defect and Diffusion Forum, 387, 10–22 (2018) |
[12] | KUNDU, B. and YOOK, S. J. An accurate approach for thermal analysis of porous longitudinal, spine and radial fins with all nonlinearity effects — analytical and unified assessment. Applied Mathematics and Computation, 402, 126124 (2021) |
[13] | CARVAJAL-MARISCAL, I., DE LEÓN-RUIZ, J. E., BELMAN-FLORES, J. M., MARTÍNEZ-ESPINOSA, E., and JOSÉ-PINEDA, O. Experimental assessment and semi empirical estimation of frost accretion — a case study on a spine-finned inverted-V tube array evaporator. Frontiers in Mechanical Engineering, 9, 1101425 (2023) |
[14] | TANUJA, T. N., KAVITHA, L., REHMAN, K. U., KUMAR, G. V., SHATANAWI, W., VARMA, S. V. K., and ASGHAR, Z. On thermal performance of spine fin in magnetized hybrid fluid rooted with Cu and MoS4 nanoparticles. AIP Advances, 14, 015068 (2024) |
[15] | VARUN KUMAR, R. S., SOWMYA, G., ABHILASHA, S. K., and PRASANNAKUMARA, B. C. Solution by operational matrix based Vieta-Lucas collocation method to analyze the thermal performance of the convex spine fin applicable in air conditioning systems. International Communications in Heat and Mass Transfer, 161, 108397 (2025) |
[16] | SOBAMOWO, G. Finite element thermal analysis of a moving porous fin with temperature-variant thermal conductivity and internal heat generation. Reports in Mechanical Engineering, 1, 110–127 (2020) |
[17] | DAS, R. and KUNDU, B. Simultaneous estimation of heat generation and magnetic field in a radial porous fin from surface temperature information. International Communications in Heat and Mass Transfer, 127, 105497 (2021) |
[18] | DIN, Z. U., ALI, A., and ZAMAN, G. Entropy generation in moving exponential porous fins with natural convection, radiation and internal heat generation. Archive of Applied Mechanics, 92, 933–944 (2022) |
[19] | DIN, Z. U., ALI, A., DE LA SEN, M., and ZAMAN, G. Entropy generation from convective-radiative moving exponential porous fins with variable thermal conductivity and internal heat generations. Scientific Reports, 12, 1791 (2022) |
[20] | GOURAN, S., GHASEMI, S. E., and MOHSENIAN, S. Effect of internal heat source and non-independent thermal properties on a convective-radiative longitudinal fin. Alexandria Engineering Journal, 61, 8545–8554 (2022) |
[21] | CHUN, C. and SAKTHIVEL, R. Homotopy perturbation technique for solving two-point boundary value problems — comparison with other methods. Computer Physics Communications, 181, 1021–1024 (2010) |
[22] | LIAO, S. Homotopy Analysis Method in Nonlinear Differential Equations, Springer, Berlin (2012) |
[23] | ROY, T. and MAITI, D. K. An optimal and modified homotopy perturbation method for strongly nonlinear differential equations. Nonlinear Dynamics, 111, 15215–15231 (2023) |
[24] | ABDEL-HALIM HASSAN, I. H. Application to differential transformation method for solving systems of differential equations. Applied Mathematical Modelling, 32, 2552–2559 (2008) |
[25] | THONGMOON, M. and PUSJUSO, S. The numerical solutions of differential transform method and the Laplace transform method for a system of differential equations. Nonlinear Analysis: Hybrid Systems, 4, 425–431 (2010) |
[26] | SARP, Ü., EVIRGEN, F., and İKIKARDEŞ, S. Applications of differential transformation method to solve systems of ordinary and partial differential equations. Balıkesir Üniversitesi Fen Bilimleri Enstitüsü Dergisi, 20, 135–156 (2018) |
[27] | ABD EL SALAM, M. A., RAMADAN, M. A., NASSAR, M. A., AGARWAL, P., and CHU, Y. M. Matrix computational collocation approach based on rational Chebyshev functions for nonlinear differential equations. Advances in Difference Equations, 2021, 331 (2021) |
[28] | POURBABAEE, M. and SAADATMANDI, A. Collocation method based on Chebyshev polynomials for solving distributed order fractional differential equations. Computational Methods for Differential Equations, 9, 858–873 (2021) |
[29] | ZHAO, S. and GU, Y. A localized Fourier collocation method for solving high-order partial differential equations. Applied Mathematics Letters, 141, 108615 (2023) |
[30] | KUMAR, M. and UMESH. Recent development of Adomian decomposition method for ordinary and partial differential equations. International Journal of Applied and Computational Mathematics, 8, 81 (2022) |
[31] | RASOULI, M., FARIBORZI ARAGHI, M. A., and DAMERCHELI, T. Approximate techniques to solve the partial integro-differential equation arising in operational risk: Adomian decomposition method. Mathematical Sciences, 17, 43–49 (2023) |
[32] | BAGHDADI, S. K. A. and AHAMMAD, N. A. A comparative study of Adomian decomposition method with variational iteration method for solving linear and nonlinear differential equations. Journal of Applied Mathematics and Physics, 12, 2789–2819 (2024) |
[33] | KUMBINARASAIAH, S. and RAGHUNATHA, K. R. The applications of Hermite wavelet method to nonlinear differential equations arising in heat transfer. International Journal of Thermofluids, 9, 100066 (2021) |
[34] | KUMAR, S., GHOSH, S., KUMAR, R., and JLELI, M. A fractional model for population dynamics of two interacting species by using spectral and Hermite wavelets methods. Numerical Methods for Partial Differential Equations, 37, 1652–1672 (2021) |
[35] | SHAH, F. A., IRFAN, M., NISAR, K. S., MATOOG, R. T., and MAHMOUD, E. E. Fibonacci wavelet method for solving time-fractional telegraph equations with Dirichlet boundary conditions. Results in Physics, 24, 104123 (2021) |
[36] | BRÉHARD, F., BRISEBARRE, N., and JOLDEŞ M. Validated and numerically efficient Chebyshev spectral methods for linear ordinary differential equations. ACM Transactions on Mathematical Software, 44, 1–42 (2018) |
[37] | CHILDS, A. M. and LIU, J. P. Quantum spectral methods for differential equations. Communications in Mathematical Physics, 375, 1427–1457 (2020) |
[38] | LOVETSKIY, K. P., KULYABOV, D. S., and HISSEIN, A. W. Multistage pseudo-spectral method (method of collocations) for the approximate solution of an ordinary differential equation of the first order. Discrete and Continuous Models and Applied Computational Science, 30, 127–138 (2022) |
[39] | LI, Y., JIANG, Y., and YANG, P. Time domain model order reduction of discrete-time bilinear systems with Charlier polynomials. Mathematics and Computers in Simulation, 190, 905–920 (2021) |
[40] | DAOUI, A., KARMOUNI, H., SAYYOURI, M., and QJIDAA, H. Efficient methods for signal processing using Charlier moments and artificial bee colony algorithm. Circuits, Systems, and Signal Processing, 41, 166–195 (2022) |
[41] | MAHMMOD, B. M., FLAYYIH, W. N., ABDULHUSSAIN, S. H., SABIR, F. A., KHAN, B., ALSABAH, M., and HUSSAIN, A. Performance enhancement of high degree Charlier polynomials using multithreaded algorithm. Ain Shams Engineering Journal, 15, 102657 (2024) |
[42] | ISLAM, M. R., NAZIB, K. M., and RAHMAN, M. A. Numerical solutions of Volterra integral equations through Galerkin weighted residual method with Charlier polynomials. Khulna University Studies, 21, 130–138 (2024) |
[43] | SHARQAWY, M. H. and ZUBAIR, S. M. Performance and optimum geometry of spines with simultaneous heat and mass transfer. International Journal of Thermal Sciences, 48, 2130–2138 (2009) |
[44] | SUN, S. W. and LI, X. F. Exact solution of the nonlinear fin problem with exponentially temperature-dependent thermal conductivity and heat transfer coefficient. Pramana, 94, 94 (2020) |
[45] | DUNSTER, T. M. Uniform asymptotic expansions for Charlier polynomials. Journal of Approximation Theory, 112, 93–133 (2001) |
[46] | KÜRKÇÜ, Ö. K. and SEZER, M. Charlier series solutions of systems of first order delay differential equations with proportional and constant arguments. Scientific Research Communications, 2, 1–11 (2022) |
[47] | ARSLANTURK, C. A decomposition method for fin efficiency of convective straight fins with temperature-dependent thermal conductivity. International Communications in Heat and Mass Transfer, 32, 831–841 (2005) |
[1] | Zhiwen FAN, Hai QING. Size-dependent bending and vibration analysis of piezoelectric nanobeam based on fractional-order kinematic relations [J]. Applied Mathematics and Mechanics (English Edition), 2025, 46(7): 1261-1272. |
[2] | M. USMAN, M. HAMID, W. A. KHAN, R. U. HAQ. Hydrodynamical characterization of nanofluidic flow driven by forced convection via a four-sided lid-driven cavity [J]. Applied Mathematics and Mechanics (English Edition), 2025, 46(7): 1383-1402. |
[3] | Yudong LI, Yan LI, Chunfa WANG, P. JOLI, Zhiqiang FENG. Numerical investigation on a comprehensive high-order finite particle scheme [J]. Applied Mathematics and Mechanics (English Edition), 2025, 46(6): 1187-1214. |
[4] | C. G. PAVITHRA, B. J. GIREESHA, S. SUSHMA, K. J. GOWTHAM. Analysis of convective-radiative heat transfer in dovetail longitudinal fins with shape-dependent hybrid nanofluids: a study using the Hermite wavelet method [J]. Applied Mathematics and Mechanics (English Edition), 2025, 46(2): 357-372. |
[5] | R. A. JAFARI-TALOOKOLAEI, H. GHANDVAR, E. JUMAEV, S. KHATIR, T. CUONG-LE. Free vibration and transient response of double curved beams connected by intermediate straight beams [J]. Applied Mathematics and Mechanics (English Edition), 2025, 46(1): 37-62. |
[6] | S. SAURABH, R. KIRAN, D. SINGH, R. VAISH, V. S. CHAUHAN. A comprehensive investigation on nonlinear vibration andbending characteristics of bio-inspired helicoidallaminated composite structures [J]. Applied Mathematics and Mechanics (English Edition), 2025, 46(1): 81-100. |
[7] | K. CHANDAN, K. KARTHIK, K. V. NAGARAJA, B. C. PRASANNAKUMARA, R. S. VARUN KUMAR, T. MUHAMMAD. Radiative heat transfer analysis of a concave porous fin under the local thermal non-equilibrium condition: application of the clique polynomial method and physics-informed neural networks [J]. Applied Mathematics and Mechanics (English Edition), 2024, 45(9): 1613-1632. |
[8] | Songye JIN, Bo ZHANG, Wuyuan ZHANG, Yuxing WANG, Huoming SHEN, Jing WANG, Juan LIU. Size-dependent thermomechanical vibration characteristics of rotating pre-twisted functionally graded shear deformable microbeams [J]. Applied Mathematics and Mechanics (English Edition), 2024, 45(6): 1015-1032. |
[9] | N. IQBAL, J. CHOI, S. F. SHAH, C. LEE, S. LEE. Mathematical modeling and simulations of stress mitigation by coating polycrystalline particles in lithium-ion batteries [J]. Applied Mathematics and Mechanics (English Edition), 2024, 45(6): 947-962. |
[10] | Qihang MA, Kaileong CHONG, Bofu WANG, Quan ZHOU. Strong shock propagation for the finite-source circular blast in a confined domain [J]. Applied Mathematics and Mechanics (English Edition), 2024, 45(6): 1071-1084. |
[11] | Hanxiao GUO, Peifeng GAO, Xingzhe WANG. Integrated multi-scale approach combining global homogenization and local refinement for multi-field analysis of high-temperature superconducting composite magnets [J]. Applied Mathematics and Mechanics (English Edition), 2024, 45(5): 747-762. |
[12] | Shijing GAO, Lele ZHANG, Jinxi LIU, Guoquan NIE, Weiqiu CHEN. Indentation behavior of a semi-infinite piezoelectric semiconductor under a rigid flat-ended cylindrical indenter [J]. Applied Mathematics and Mechanics (English Edition), 2024, 45(4): 649-662. |
[13] | Shiping JIANG, Xiujing HAN, Hailong YU. Mixed-mode fast-slow oscillations in the frequency switching Duffing system with a 1:n frequency ratio [J]. Applied Mathematics and Mechanics (English Edition), 2024, 45(12): 2131-2146. |
[14] | J. A. OTERO, Y. ESPINOSA-ALMEYDA, R. RODRÍGUEZ-RAMOS, J. MERODIO. Semi-analytical finite element method applied for characterizing micropolar fibrous composites [J]. Applied Mathematics and Mechanics (English Edition), 2024, 45(12): 2147-2164. |
[15] | M. IBTESAM, S. NADEEM, J. ALZABUT. Numerical computations of magnetohydrodynamic mixed convective flow of Casson nanofluid in an open-ended cavity formed by earthquake-induced faults [J]. Applied Mathematics and Mechanics (English Edition), 2024, 45(12): 2215-2230. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||