[1] KOPIDAKIS, G., AUBRY, S., and TSIRONIS, G. P. Targeted energy transfer through discrete breathers in nonlinear systems. Physical Review Letters, 87, 1-4(2001) [2] AUBRY, S., KOPIDAKIS, G., MORGANTE, A. M., and TSIRONIS, G. P. Analytic conditions for targeted energy transfer between nonlinear oscillators or discrete breathers. Physica B: Condensed Matter, 296, 222-236(2001) [3] GENDELMAN, O. V. Transition of energy to a nonlinear localized mode in a highly asymmetric system of two oscillators. Nonlinear Dynamics, 25, 237-253(2001) [4] VAKAKIS, A. F. and GENDELMAN, O. Energy pumping in nonlinear mechanical oscillators: part II--resonance capture. Journal of Applied Mechanics, 68, 42-48(2001) [5] GENDELMAN, O., MANEVITCH, L. I., VAKAKIS, A. F., and M'CLOSKEY, R. Energy pumping in nonlinear mechanical oscillators: part I -- dynamics of the underlying Hamiltonian systems. Journal of Applied Mechanics, 68, 34-41(2001) [6] MCFARLAND, D. M., BERGMAN, L. A., and VAKAKIS, A. F. Experimental study of non-linear energy pumping occurring at a single fast frequency. International Journal of Non-Linear Mechanics, 40, 891-899(2005) [7] KOVALEVA, A. and MANEVITCH, L. I. Classical analog of quasilinear Landau-Zener tunneling. Physical Review E, 85, 1-8(2012) [8] MANIADIS, P., KOPIDAKIS, G., and AUBRY, S. Classical and quantum targeted energy transfer between nonlinear oscillators. Physica D: Nonlinear Phenomena, 188, 153-177(2004) [9] KOVALEVA, A. and MANEVITCH, L. I. Internal autoresonance in coupled oscillators with slowly decaying frequency. Physical Review E, 96, 1-7(2017) [10] BUNYAN, J., MOORE, K. J., MOJAHED, A., FRONK, M. D., LEAMY, M., TAWFICK, S., and VAKAKIS, A. F. Acoustic nonreciprocity in a lattice incorporating nonlinearity, asymmetry, and internal scale hierarchy: experimental study. Physical Review E, 97, 1-13(2018) [11] ZHANG, Y. W., ZHANG, Z., CHEN, L. Q., YANG, T. Z., FANG, B., and ZANG, J. Impulse-induced vibration suppression of an axially moving beam with parallel nonlinear energy sinks. Nonlinear Dynamics, 82, 61-71(2015) [12] SHAO, J. and COCHELIN, B. Theoretical and numerical study of targeted energy transfer inside an acoustic cavity by a non-linear membrane absorber. International Journal of Non-Linear Mechanics, 64, 85-92(2014) [13] VAKAKIS, A. F., GENDELMAN, O. V., BERGMAN, L. A., MCFARLAND, D. M., KERSCHEN, G., and LEE, Y. S. Passive Nonlinear Targeted Energy Transfer in Mechanical and Structural Systems, Springer-Verlag, Berlin (2008) [14] LEE, Y. S., KERSCHEN, G., VAKAKIS, A. F., PANAGOPOULOS, P., BERGMAN, L., and MCFARLAND, D. M. Complicated dynamics of a linear oscillator with a light, essentially nonlinear attachment. Physica D: Nonlinear Phenomena, 204, 41-69(2005) [15] QUINN, D. D., GENDELMAN, O., KERSCHEN, G., SAPSIS, T. P., BERGMAN, L. A., and VAKAKIS, A. F. Efficiency of targeted energy transfers in coupled nonlinear oscillators associated with 1: 1 resonance captures: part I. Journal of Sound and Vibration, 311, 1228-1248(2008) [16] VAKAKIS, A. F., AL-SHUDEIFAT, M. A., and HASAN, M. A. Interactions of propagating waves in a one-dimensional chain of linear oscillators with a strongly nonlinear local attachment. Meccanica, 49, 2375-2397(2014) [17] WU, Z., SEGUY, S., and PAREDES, M. Basic constraints for design optimization of cubic and bistable nonlinear energy sink. Journal of Vibration and Acoustics, 144, 1-17(2022) [18] LI, S., WU, H., and CHEN, J. Global dynamics and performance of vibration reduction for a new vibro-impact bistable nonlinear energy sink. International Journal of Non-Linear Mechanics, 139, 103891(2021) [19] WEI, Y. M., WEI, S., ZHANG, Q. L., DONG, X. J., PENG, Z. K., and ZHANG, W. M. Targeted energy transfer of a parallel nonlinear energy sink. Applied Mathematics and Mechanics (English Edition), 40(5), 621-630(2019) https://doi.org/10.1007/s10483-019-2477-6 [20] CAO, R. Q., WANG, Z. J., ZANG, J., and ZHANG, Y. W. Resonance response of fluid-conveying pipe with asymmetric elastic supports coupled to lever-type nonlinear energy sink. Applied Mathematics and Mechanics (English Edition), 43(12), 1873-1886(2022) https://doi.org/10.1007/s10483-022-2925-8 [21] XUE, J. R., ZHANG, Y. W., DING, H., and CHEN, L. Q. Vibration reduction evaluation of a linear system with a nonlinear energy sink under a harmonic and random excitation. Applied Mathematics and Mechanics (English Edition), 41(1), 1-14(2020) https://doi.org/10.1007/s10483-020-2560-6 [22] NASRABADI, M., SEVBITOV, A. V., MALEKI, V. A., AKBAR, N., and JAVANSHIR, I. Passive fluid-induced vibration control of viscoelastic cylinder using nonlinear energy sink. Marine Structures, 81, 103116(2022) [23] JIANG, G., WANG, Y., LI, F., and JING, X. An integrated nonlinear passive vibration control system and its vibration reduction properties. Journal of Sound and Vibration, 509, 116231(2021) [24] YAO, H., WANG, Y., CAO, Y., and WEN, B. Multi-stable nonlinear energy sink for rotor system. International Journal of Non-Linear Mechanics, 118, 103273(2020) [25] CHEN, J. E., ZHANG, W., LIU, J., and HU, W. H. Vibration absorption of parallel-coupled nonlinear energy sink under shock and harmonic excitations. Applied Mathematics and Mechanics (English Edition), 42(8), 1135-1154(2021) https://doi.org/10.1007/s10483-021-2757-6 [26] ZHANG, S., YANG, Y., LI, Y., WANG, F., GE, Y., and YANG, Y. Research on vibration suppression of spacecraft flexible appendage based on nonlinear energy sink. Journal of Vibration Engineering and Technologies, 11, 449-459(2023) [27] TIAN, W., LI, Y., LI, P., YANG, Z., and ZHAO, T. Passive control of nonlinear aeroelasticity in hypersonic 3-D wing with a nonlinear energy sink. Journal of Sound and Vibration, 462, 114942(2019) [28] BICHIOU, Y., HAJJ, M. R., and NAYFEH, A. H. Effectiveness of a nonlinear energy sink in the control of an aeroelastic system. Nonlinear Dynamics, 86, 2161-2177(2016) [29] ZHANG, Y. W., XU, K. F., ZANG, J., NI, Z. Y., ZHU, Y. P., and CHEN, L. Q. Dynamic design of a nonlinear energy sink with NiTiNOL-steel wire ropes based on nonlinear output frequency response functions. Applied Mathematics and Mechanics (English Edition), 40(12), 1791-1804(2019) https://doi.org/10.1007/s10483-019-2548-9 [30] GUO, H. L., CHEN, Y. S., and YANG, T. Z. Limit cycle oscillation suppression of 2-DOF airfoil using nonlinear energy sink. Applied Mathematics and Mechanics (English Edition), 34(10), 1277-1290(2013) https://doi.org/10.1007/s10483-013-1744-8 [31] CHEN, Y. Y., ZHAO, W., SHEN, C. Y., and QIAN, Z. C. Bistable nonlinear energy sink using magnets and linear springs: application to structural seismic control. Shock and Vibration, 2021, (2021) [32] LU, X., LIU, Z., and LU, Z. Optimization design and experimental verification of track nonlinear energy sink for vibration control under seismic excitation. Structural Control and Health Monitoring, 24, 1-14(2017) [33] ZHANG, Y. W., SU, C., NI, Z. Y., ZANG, J., and CHEN, L. Q. A multifunctional lattice sandwich structure with energy harvesting and nonlinear vibration control. Composite Structures, 221, 110875(2019) [34] CHEN, J. E., ZHANG, W., YAO, M. H., and LIU, J. Vibration suppression for truss core sandwich beam based on principle of nonlinear targeted energy transfer. Composite Structures, 171, 419-428(2017) [35] WANG, K., ZHOU, J. X., TAN, D. G., LI, Z. Y., LIN, Q. D., and XU, D. L. A brief review of metamaterials for opening low-frequency band gaps. Applied Mathematics and Mechanics (English Edition), 43(7), 1125-1144(2022) https://doi.org/10.1007/s10483-022-2870-9 [36] DING, H. and CHEN, L. Q. Designs, analysis, and applications of nonlinear energy sinks. Nonlinear Dynamics, 100, 3061-3107(2020) [37] KONG, X., LI, H., and WU, C. Dynamics of 1-dof and 2-dof energy sink with geometrically nonlinear damping: application to vibration suppression. Nonlinear Dynamics, 91, 733-754(2018) [38] WANG, G. X., DING, H., and CHEN, L. Q. Nonlinear normal modes and optimization of a square root nonlinear energy sink. Nonlinear Dynamics, 104, 1069-1096(2021) [39] OLIVA, M., BARONE, G., and NAVARRA, G. Optimal design of nonlinear energy sinks for SDOF structures subjected to white noise base excitations. Engineering Structures, 145, 135-152(2017) [40] QIU, D., LI, T., SEGUY, S., and PAREDES, M. Efficient targeted energy transfer of bistable nonlinear energy sink: application to optimal design. Nonlinear Dynamics, 92, 443-461(2018) [41] WANG, G. X. and DING, H. Mass design of nonlinear energy sinks. Engineering Structures, 250, 113438(2022) [42] CHEN, L. Q., LI, X., LU, Z. Q., ZHANG, Y. W., and DING, H. Dynamic effects of weights on vibration reduction by a nonlinear energy sink moving vertically. Journal of Sound and Vibration, 451, 99-119(2019) [43] WANG, X., GENG, X. F., MAO, X. Y., DING, H., JING, X. J., and CHEN, L. Q. Theoretical and experimental analysis of vibration reduction for piecewise linear system by nonlinear energy sink. Mechanical Systems and Signal Processing, 172, 109001(2022) [44] DING, H. and SHAO, Y. F. NES cell. Applied Mathematics and Mechanics (English Edition), 43(12), 1793-1804(2022) https://doi.org/10.1007/s10483-022-2934-6 [45] DONG, X. H., HAO, Z. M., JIA, B., and HOU, M. Y. Research development of the anti-micro vibration of precision equipment. Advanced Materials Research, 694-697, 403-406(2013) [46] LIU, C., JING, X., DALEY, S., and LI, F. Recent advances in micro-vibration isolation. Mechanical Systems and Signal Processing, 56-57, 55-80(2015) [47] LI, L., WANG, L., YUAN, L., ZHENG, R., WU, Y., SUI, J., and ZHONG, J. Micro-vibration suppression methods and key technologies for high-precision space optical instruments. Acta Astronautica, 180, 417-428(2021) [48] ZHANG, X., YU, H., HE, Z., HUANG, G., CHEN, Y., and WANG, G. A metamaterial beam with inverse nonlinearity for broadband micro-vibration attenuation. Mechanical Systems and Signal Processing, 159, 107826(2021) [49] BOROSON, E. and MISSOUM, S. Optimization under uncertainty of parallel nonlinear energy sinks. 57th AIAA/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference, American Institute of Aeronautics and Astronautics Inc., San Dieg (2016) |