[1] L. N. Tao and W. F. Donovan, Through-flow in concentric and eccentric annuli of fine cleance with and without relative motion of the boundaries, Trans. ASME, 77 (1955),1291-1301.
[2] J. F. Heyda, A Green's function solution for the case of non-concentric circular cylinders, J. Franklin Inst., 267 (1959), 25-34.
[3] P. J. Redberger and M. E. Charles, Axial laminar flow in a circular pipe, containing a fixed eccentric core, Cdn. J. Chem. Eng., 40 (1962), 148-151.
[4] R. D. Vaugh. Axial laminar flow of non-Newtonian fluids in narrow eccentric annuli,SPEJ (Dec. 1965), 277-280.
[5] A. W. lyoho and J. J. Azar, An accurate slot-model for non-Newtonian fluid flow through eccentric annuli, SPEJ (Oct. 1981 ), 565-572.
[6] I. Tosun, Axial familiar in an eccentric annulus: an approximate solution, AIChE J., 30 (1984), 877-878.
[7] R. E. Robertson and H. A. Stiff, An improved rheological model for relating shear stress to shear rate in drilling fluids and cement slurries, Trans. AIME. 261. 31 (1976).
[8] R. M. Beirute and R. W. Flunlerfelt, An evauction of the Robertson-Stiff model describing rheological properties of drilling fluids and cement slurries, Slurries.Soc. Pet. Eng. J.,17, 2 (1977), 97.
[9] J. E. Cloud and P. E. Clark, Stimulation fluid rheology: alternatives to tile power-law fluid model for grosslinked gels, SPE 11615 (1980).
[10] Wang Haige and Liu Xisheng, Study on steady surge pressure for yield-pseudoplastic fluid in a concentric annulus, Applied Mathematics and Mechanics(English Ed.), 17, 1 (1996), 15-23. |