[1] Blekhman, I. I., Fradkov, A. L., Nijmeijer, H., and Pogromsky, A. Y. On self-synchronization and controlled synchronization. System & Control Letters, 31(5), 299-305 (1997)
[2] Blekhman, I. I. and Yaroshevich, N. P. Extension of the domain of applicability of the integral stability criterion (extremum property) in synchronization problems. Journal of Applied Mathematics and Mechanics, 68(6), 839-864 (2004)
[3] Blekhman, I. I., Fradkov, A. L., Tomchina, O. P., and Bogdanov, D. E. Self-synchronization and controlled synchronization: general definition and example design. Mathematics and Computers in Simulation, 58(4), 367-384 (2002)
[4] Sperling, L. Selbstsynchronisation statisch und dynamisch unwuchtiger vibratoren (in German). Technische Mechanik, 14(1), 61-76 (1994)
[5] Sperling, L. Selbstsynchronisation statisch und dynamisch unwuchtiger vibratoren, teil II ausführung und beispiele (in German). Technische Mechanik, 14(2), 85-96 (1994)
[6] Ragulskis, K. M. Mechanisms on the Vibrating Base (in Russian), Lithuanian Academy of Sciences, Kaunas, 56-69 (1963)
[7] Ragulskis, K. M., Vitkus, I. I., and Ragulskiene, V. L. Self-Synchronization of Systems (in Russian), Mintis, Vilnius, 156-184 (1965)
[8] Nagaev, R. F. Dynamics of Synchronizing Systems, Spriger, Berlin, 255-287 (2003)
[9] Kononenko, V. O. Vibrating System with Limited Power Supply, Illiffe, London, 11-19 (1969)
[10] Balthazar, J. M., Felix, J. L. P., and Reyolando, M. L. R. Short comments on self-synchronization of two non-ideal sources supported by a flexible portal frame structure. Journal of Vibration and Control, 10(12), 1739-1748 (2004)
[11] Balthaza, J. M., Felix, J. L. P., and Brasil, R. M. Some comments on the numerical simulation of self-synchronization of four non-ideal exciters. Applied Mathematics and Computation, 164(2), 615-625 (2005)
[12] Wen, B. C. Recent development of vibration utilization engineering. Frontiers of Mechanical Engineering in China, 3(1), 1-9 (2008)
[13] Zhao, C. Y., Zhu, H. T., Wang, R. Z., and Wen, B. C. Synchronization of two non-identical coupled exciters in a non-resonant vibrating system of linear motion, part I: theoretical analysis. Shock and Vibration, 16(5), 505-516 (2009)
[14] Zhao, C. Y., Zhu, H. T., Bai, T. J., and Wen, B. C. Synchronization of two non-identical coupled exciters in a non-resonant vibrating system of linear motion, part II: numeric analysis. Shock and Vibration, 16(5), 517-528 (2009)
[15] Zhao, C. Y., Zhu, H. T., Zhang, Y. M., and Wen, B. C. Synchronization of two coupled exciters in a vibrating system of spatial motion. Acta Mechanica Sinica, 26(3), 477-493 (2010) |