[1] WEBER, C. and NOELS, H. Atherosclerosis:current pathogenesis and therapeutic options. Nature Medicine, 17(11), 1410-1422(2011) [2] LOBATTO, M. E., FUSTER, V., FAYAD, Z. A., and MULDER, W. J. Perspectives and opportunities for nanomedicine in the management of atherosclerosis. Nature Reviews Drug Discovery, 10(11), 963(2011) [3] CORTI, R. and FUSTER, V. Imaging of atherosclerosis:magnetic resonance imaging. European Heart Journal, 32(14), 1709-1719(2011) [4] SUN, X., LI, W., ZHANG, X., QI, M., ZHANG, Z., ZHANG, X. E., and CUI, Z. In vivo targeting and imaging of atherosclerosis using multifunctional virus-like particles of simian virus 40. Nano Letters, 16(10), 6164-6171(2016) [5] VINK, A., SCHONEVELD, A. H., RICHARD, W., DE KLEIJN, D. P., FALK, E., BORST, C., and PASTERKAMP, G. Plaque burden, arterial remodeling and plaque vulnerability:determined by systemic factors? Journal of the American College of Cardiology, 38(3), 718-723(2001) [6] GHOLIPOUR, A., GHAYESH, M. H., ZANDER, A., and MAHAJAN, R. Three-dimensional biomechanics of coronary arteries. International Journal of Engineering Science, 130, 93-114(2018) [7] ZHANG, J., ZU, Y., DHANASEKARA, C. S., LI, J., WU, D., FAN, Z., and WANG, S. Detection and treatment of atherosclerosis using nanoparticles. Wiley Interdisciplinary Reviews:Nanomedicine and Nanobiotechnology, 9(1), e1412(2017) [8] SCHIENER, M., HOSSANN, M., VIOLA, J. R., ORTEGA-GOMEZ, A., WEBER, C., LAUBER, K., and SOEHNLEIN, O. Nanomedicine-based strategies for treatment of atherosclerosis. Trends in Molecular Medicine, 20(5), 271-281(2014) [9] LÜBBE, A. S., ALEXIOU, C., and BERGEMANN, C. Clinical applications of magnetic drug targeting. Journal of Surgical Research, 95(2), 200-206(2001) [10] TORCHILIN, V. P. Drug targeting. European Journal of Pharmaceutical Sciences, 11, S81-S91(2000) [11] VASIR, J. K. and LABHASETWAR, V. Targeted drug delivery in cancer therapy. Technology in Cancer Research and Treatment, 4(4), 363-374(2005) [12] CREGG, P. J., MURPHY, K., and MARDINOGLU, A. Inclusion of interactions in mathematical modelling of implant assisted magnetic drug targeting. Applied Mathematical Modelling, 36(1), 1-34(2012) [13] ALEXIOU, C., ARNOLD, W., KLEIN, R. J., PARAK, F. G., HULIN, P., BERGEMANN, C., and LUEBBE, A. S. Locoregional cancer treatment with magnetic drug targeting. Cancer Research, 60(23), 6641-6648(2000) [14] ALEXIOU, C., JURGONS, R., SCHMID, R., ERHARDT, W., PARAK, F., BERGEMANN, C., and IRO, H. Magnetic drug targeting-a new approach in locoregional tumor therapy with chemotherapeutic agents. Experimental Animal Studies, 53(7), 618-622(2005) [15] IJAZ, S. and NADEEM, S. Examination of nanoparticles as a drug carrier on blood flow through catheterized composite stenosed artery with permeable walls. Computer Methods and Programs in Biomedicine, 133, 83-94(2016) [16] FURLANI, E. P. and NG, K. C. Analytical model of magnetic nanoparticle transport and capture in the microvasculature. Physical Review E, 73(6), 061919(2006) [17] HAVERKORT, J. W., KENJEREŠ, S., and KLEIJN, C. R. Magnetic particle motion in a Poiseuille flow. Physical Review E, 80(1), 016302(2009) [18] HAVERKORT, J. W., KENJEREŠ, S., and STUART, D. C. Computational simulations of mag-netic particle capture in simplified and realistic arterial flows:towards optimized magnetic drug targeting. World Congress on Medical Physics and Biomedical Engineering, Springer, Berlin, 1006-1009(2009) [19] KENJEREŠ, S. and RIGHOLT, B. W. Simulations of magnetic capturing of drug carriers in the brain vascular system. International Journal of Heat and Fluid Flow, 35, 68-75(2012) [20] LARIMI, M. M., RAMIAR, A., and RANJBAR, A. A. Numerical simulation of magnetic nanoparticles targeting in a bifurcation vessel. Journal of Magnetism and Magnetic Materials, 362, 58-71(2014) [21] LÜBBE, A. S., BERGEMANN, C., RIESS, H., SCHRIEVER, F., REICHARDT, P., POSSINGER, K., MATTHIAS, M., DÖRKEN, B., HERRMANN, F., GÜRTLER, R., HOHEN-BERGER, P., HAAS, N., SOHR, R., SANDER, B., LEMKE, A. J., OHLENDORF, D., HUHNT, W., and HUHN, D. Clinical experiences with magnetic drug targeting:a phase I study with 4'-epidoxorubicin in 14 patients with advanced solid tumors. Cancer Research, 56(20), 4686-4693(1996) [22] LÜBBE, A. S., BERGEMANN, C., HUHNT, W., FRICKE, T., RIESS, H., BROCK, J. W., and HUHN, D. Preclinical experiences with magnetic drug targeting:tolerance and efficacy. Cancer Research, 56(20), 4694-4701(1996) [23] CHEN, H., EBNER, A. D., KAMINSKI, M. D., ROSENGART, A. J., and RITTER, J. A. Analysis of magnetic drug carrier particle capture by a magnetizable intravascular stent-2:parametric study with multi-wire two-dimensional model. Journal of Magnetism and Magnetic Materials, 293(1), 616-632(2005) [24] UDREA, L. E., STRACHAN, N. J., BǍDESCU, V., and ROTARIU, O. An in vitro study of magnetic particle targeting in small blood vessels. Physics in Medicine & Biology, 51(19), 4869-4881(2006) [25] JURGONS, R., SELIGER, C., HILPERT, A., TRAHMS, L., ODENBACH, S., and ALEXIOU, C. Drug loaded magnetic nanoparticles for cancer therapy. Journal of Physics:Condensed Matter, 18(38), S2893(2006) [26] ALKSNS, J. F., FINGERHUT, A. G., and RAND, R. W. Magnetic probe for the stereotactic thrombosis of intracranial aneurysms. Journal of Neurology, Neurosurgery, and Psychiatry, 30(2), 159-162(1967) [27] GOODWIN, S., PETERSON, C., HOH, C., and BITTNER, C. Targeting and retention of magnetic targeted carriers (MTCs) enhancing intra-arterial chemotherapy. Journal of Magnetism and Magnetic Materials, 194(1-3), 132-139(1999) [28] ALEXIOU, C., SCHMIDT, A., KLEIN, R., HULIN, P., BERGEMANN, C., and ARNOLD, W. Magnetic drug targeting:biodistribution and dependency on magnetic field strength. Journal of Magnetism and Magnetic Materials, 252, 363-366(2002) [29] TAHIR, S. and MITAL, M. Numerical investigation of laminar nanofluid developing flow and heat transfer in a circular channel. Applied Thermal Engineering, 39, 8-14(2012) [30] ANSYS FLUENT THEROY GUIDE, RELEASE 19.1, ANSYS, Inc. (2019) [31] JOHNSTON, B. M., JOHNSTON, P. R., CORNEY, S., and KILPATRICK, D. Non-Newtonian blood flow in human right coronary arteries:steady state simulations. Journal of Biomechanics, 37(5), 709-720(2004) [32] BALLYK, P. D., STEINMAN, D. A., and ETHIER, C. R. Simulation of non-Newtonian blood flow in an end-to-side anastomosis. Biorheology, 31(5), 565-586(1994) [33] KHAKPOUR, M. and VAFAI, K. Critical assessment of arterial transport models. International Journal of Heat and Mass Transfer, 51(3/4), 807-822(2008) [34] GOVINDARAJU, K., KAMANGER, S., BADRUDDIN, I. A., VISWANATHAN, G. N., BADARUDIN, A., and AHMED, N. S. Effect of porous media of the stenosed artery wall to the coronary physiological diagnostic parameter:a computational fluid dynamic analysis. Atherosclerosis, 233(2), 630-635(2014) [35] PROSI, M., ZUNINO, P., PERKTOLD, K., and QUARTERONI, A. Mathematical and numerical models for transfer of low-density lipoproteins through the arterial walls:a new methodology for the model set up with applications to the study of disturbed lumenal flow. Journal of Biomechanics, 38(4), 903-917(2005) [36] LI, X., SAPP, E., CHASE, K., COMER-TIERNEY, L. A., MASSO, N., ALEXANDER, J., and ARONIN, N. Disruption of Rab11 activity in a knock-in mouse model of Huntington's disease. Neurobiology of Disease, 36(2), 374-383(2009) [37] BANERGEE, M. K., DATTA, A., and GANGULY, R. Magnetic drug targeting in partly occluded blood vessels using magnetic microspheres. Journal of Nanotechnology in Engineering and Medicine, 1(4), 041005(2010) |