[1] EASTMAN, J. A. and CHOI, S. U. S. Increasing the thermal conductivity of fluids by using nanoparticles. Developments and Applications of Non-Newtonian Flows, 231, 99-105(1995) [2] KANG, H. U., KIM, S. H., and OH, J. M. Evaluation of thermal conductivity of nanofluid by using experimental effective particle volume. Experimental Heat Transfer, 19, 181-191(2006) [3] HSIAO, K. L. Stagnation electrical MHD nanofluid mixed convection with slip boundary on a stretching sheet. Applied Thermal Engineering, 98, 850-861(2016) [4] HSIAO, K. L. Micropolar nanofluid flow with MHD and viscous dissipation effects towards a stretching sheet with multimedia feature. International Journal of Heat and Mass Transfer, 112, 983-990(2017) [5] HSIAO, K. L. To promote radiation electrical MHD activation energy thermal extrusion manufacturing system efficiency by using Carreau-nanofluid with parameters control method. Energy, 130, 486-499(2017) [6] GHADIKOLAEI, S. S., YASSARI, M., SADEGHI, H., HOSSEINZADEH, K., and GANJI, D. D. Investigation on thermophysical properties of TiO2-Cu/H2O hybrid nanofluid transport dependent on shape factor in MHD stagnation-point flow. Powder Technology, 322, 428-438(2017) [7] MEHRYAN, S. A. M., KASHKOOLI, F. M., GHALAMBAZ, M., and CHAMKHA, A. J. Free convection of hybrid Al2O3-Cu water nanofluid in a differentially heated porous cavity. Advanced Powder Technology, 28, 2295-2305(2017) [8] GHADIKOLAEI, S. S., HOSSEINZADEH, K., HATAMI, M., and GANJI, D. D. Investigation of MHD boundary layer for micropolar having hybrid nanofluid dusty fluid (Cu-Al2O3) over a porous medium. Journal of Molecular Liquids, 268, 813-823(2018) [9] GANJI, D. D., POURMEHRAN, O., RAHIMI, G. M., and BANDPY, M. G. Analysis of the impact of squeezing nanofluid simulation, MHD effect and unsteady case on heat conduction parameters. Journal of the Taiwan Institute of Chemical Engineers, 67, 467-475(2018) [10] SHARMA, R. P., MISHRA, R. S., and MUNJAN, S. R. Influence of MHD and thermal radiation on three-dimensional flow and heat conduction of nanofluid past a shrinking sheet. International Journal of Applied Mechanics and Engineering, 24, 183-199(2019) [11] WANG, C. Y. Investigation of the axisymmetric steam flow in the presence of MHD, heat sink/source and viscous dissipation effect over an axisymmetric shrinking sheet. Journal of NonLinear Mechanics, 43, 377-382(2018) [12] RAJOTIA, D. and JAT, R. N. Three-dimensional magnetohydrodynamics axisymmetric stagnation flow and heat transfer due to an axisymmetric shrinking/stretching sheet with viscous dissipation and heat source/sink. Chinese Physics B, 23, 1-9(2018) [13] GHASEMI, S. E., JING, D., GANJI, D. D., and HATAMI, M. Numerical investigation on nanofluid flow in the presence of MHD effect and thermal radiation over a stretching surface. Journal of Molecular Liquids, 268, 813-823(2018) [14] LI, Q. and XUAN, Y. Analysis on flow features and convective heat transfer on nanofluids. ASME Journal of Heat Transfer, 125, 151-155(2003) [15] GHOLINIA, S., GANJI, D. D., GHOLINIA, M., and HOSSEINZADEH, K. H. Analysis of ethylene glycol nanofluid flow in the presence of magnetic field over vertical permeable cylinder. Results in Physics, 9, 1525-1533(2018) [16] HASSAN, M., ABDULLAH, A. L., MARIN, M., and ELLAAHI, R. Nanofluid flow convective heat conduction in a porous medium over a wavy cylinder. Physics Letters A, 382, 2749-2753(2018) [17] HAYAT, T., ALSAEDI, A., KHAN, M., and MUHAMMAD, T. Three-dimensional flow model of nano fluid with mass and heat-flux. Chinese Journal of Physics, 55, 1495-1510(2017) [18] HIEMENZ, K. Die Grenzschicht an einem in den gleichförmingen Flussigkeitsstrom eingetauchten geraden Kreiszylinder. Dingler Polytechic Journal, 326, 321-410(1911) [19] HOMANN, F. Der Einfluss grosser Zähigkeit bei der Strömung um den Zylinder und um die Kugel. Zeitschrift für Angewandte Mathematik und Mechanik, 16, 153-164(1936) [20] HOWARTH, L. The boundary layer equations in three-dimensional flow, part Ⅱ:the flow near a stagnation-point. Philosophical Magazine, 42, 1433-1440(1951) [21] DAVEY, A. Boundary-layer flow at a saddle point of attachment. Journal of Fluid Mechanics, 10, 593-610(1961) [22] DAVEY, A. and SCHOFIELD, D. Three-dimensional flow near a two-dimensional stagnationpoint. Journal of Fluid Mechanics, 28, 149-151(1967) [23] WEIDMAN, P. D. Non-axisymmetric Homann stagnation-point flows. Journal of Fluid Mechanics, 702, 460-469(2012) [24] DINARVAND, S., HOSSEINI, R., and POP, I. Homotopy analysis method for unsteady mixed convective stagnation-point flow of a nano fluid using Tiwari-Das nano fluid model. International Journal of Numerical Methods for Heat and Fluid Flow, 26, 40-62(2016) [25] TIWARI, R. K. and DAS, M. K. Heat transfer augmentation in a two-sided lid-driven differentially heated square cavity utilizing nanofluids. International Journal of Heat Mass Transfer, 50, 2002-2018(2007) [26] AMIRI, A. J., ARDAHAIE, S. S., GANJI, D. D., and HOSSEINZADEH, K. H. Impact of variable Lorentz force on a nanofluid flow in a moveable plate. Case Studies in Thermal Engineering, 10, 595-610(2017) [27] LIGHTHILL, M. J. Displacement thickness. Journal of Fluid Mechanics, 4, 383-392(1958) |