[1] CHOI, S. U. S. and EASTMAN, J. A. Enhancement thermal conductivity of fluids with nanoparticles. Proceedings of the 1995 ASME International Mechanical Engineering Congress and Exposition, 66, 99-105(1995) [2] DAS, S. K., CHOI, S. U. S., YU, W., and PRADEEP, Y. Nanofluids:Science and Technology, Wiley, New Jersey (2008) [3] MINKOWYCZ, W. J., SPARROW, E. M., and ABRAHAM, J. P. Nanoparticle Heat Transfer and Fluid Flow, CRC Press, Taylor & Francis Group, Boca Raton (2013) [4] SHENOY, A., SHEREMET, M., and POP, I. Convective Flow and Heat Transfer from Wavy Surfaces:Viscous Fluids, Porous Media and Nanofluids, CRC Press, Taylor & Francis Group, New York (2016) [5] NIELD, D. A. and BEJAN, A. Convection in Porous Media, 5th ed., Springer, New York (2017) [6] BUONGIORNO, J., VENERUS, D. C., PRABHAT, N., MCKRELL, T., TOWNSEND, J., CHRISTIANSON, R., TOLMACHEV, Y. V., KEBLINSKI, P., HU, L., ALVARADO, J. L., BANG, I. C., BISHNOI, S. W., BONETTI, M., BOTZ, F., CECERE, A., CHANG, Y., CHEN, G., CHEN, H., CHUNG, S. J., CHYU, M. K., DAS, S. K., PAOLA, R. D., DING, Y., DUBOIS, F., DZIDO, G., EAPEN, J., ESCHER, W., FUNFSCHILLING, D., GALAND, Q., GAO, J., GHARAGOZLOO, P. E., GOODSON, K. E., GUTIERREZ, J. G., HONG, H., HORTON, M., HWANG, K. S., IORIO, C. S., JANG, S. P., JARZEBSKI, A. B., JIANG, Y., JIN, L., KABELAC, S., KAMATH, A., KEDZIERSKI, M. A., KIENG, L. G., KIM, C., KIM, J. H., KIM, S., LEE, S. H., LEONG, K. C., MANNA, I., MICHEL, B., NI, R., PATEL, H. E., PHILIP, J., POULIKAKOS, D., REYNAUD, C., SAVINO, R., SINGH, P. K., SONG, P., SUNDARARAJAN, T., TIMOFEEVA, E., TRITCAK, T., TURANOV, A. N., VAERENBERGH, S. V., WEN, D., WITHARANA, S., YANG, C., YEH, W. H., ZHAO, X. Z., and ZHOU, S. Q. A benchmark study on the thermal conductivity of nanofluids. Journal of Applied Physics, 106, 094312(2009) [7] MANCA, O., JALURIA, Y., and POULIKAKOS, D. Heat transfer in nanofluids. Advances in Mechanical Engineering, 2010, 380826(2010) [8] MAHIAN, O., KIANIFAR, A., KALOGIROU, S. A., POP, I., and WONGWISES, S. A review of the applications of nanofluids in solar energy. International Journal of Heat Mass and Transfer, 57, 582-594(2013) [9] MAHIAN, O., KOLSI, L., AMANI, M., ESTELLE, P., AHMADI, G., KLEINSTREUER, C., MARSHALL, J. S., TAYLOR, R. A., ABU-NADA, E., RASHIDI, S., NIAZMAND, H., WONGWISES, S., HAYAT, T., KASAEIAN, A., and POP, I. Recent advances in modeling and simulation of nanofluid flows-part I:fundamental and theory. Physics Reports, 790, 1-48(2019) [10] MAHIAN, O., KOLSI, L., AMANI, M., ESTELLE, P., AHMADI, G., KLEINSTREUER, C., MARSHALL, J. S., TAYLOR, R. A., ABU-NADA, E., RASHIDI, S., NIAZMAND, H., WONGWISES, S., HAYAT, T., KASAEIAN, A., and POP, I. Recent advances in modelling and simulation of nanofluid flows-part II:applications. Physics Reports, 791, 1-60(2019) [11] SHEIKHOLESLAMI, M. and GANJI, D. D. Nanofluid convective heat transfer using semi analytical and numerical approaches:a review. Journal of the Taiwan Institute of Chemical Engineers, 65, 43-77(2016) [12] KAKAÇ, S. and PRAMUANJAROENKIJ, A. Single-phase and two-phase treatments of convective heat transfer enhancement with nanofluids-a state-of-the-art review. International Journal of Thermal Sciences, 100, 75-97(2016) [13] GROŞAN, T., SHEREMET, M. A., and POP, I. Heat transfer enhancement in cavities filled with nanofluids. Advances Heat Transfer Fluids:from Numerical to Experimental Techniques (ed. MINEA, A. A.), CRC Press, Taylor & Francis, New York, 267-284(2017) [14] SATHIYAMOORTHY, M. and CHAMKHA, A. J. Natural convection flow under magnetic field in a square cavity for uniformly (or) linearly heated adjacent walls. International Journal of Numerical Methods for Heat and Fluid Flow, 22, 677-698(2012) [15] SHEIKHOLESLAMI, M. and GANJI, D. D. Ferrohydrodynamic and magnetohydrodynamic effects on ferrofluid flow and convective heat transfer. Energy, 75, 400-410(2014) [16] CHAMKHA, A. J. and SELIMEFENDIGIL, F. MHD free convection and entropy generation in a corrugated cavity filled with a porous medium saturated with nanofluids. Entropy, 20, 846(2018) [17] HUMINIC, G. and HUMINIC, A. Hybrid nanofluids for heat transfer applications-a state-ofthe-art review. International Journal of Heat Mass and Transfer, 125, 82-103(2018) [18] SARKARN, J., GHOSH, P., and ADIL, A. A review on hybrid nanofluids:recent research, development and applications. Renewable and Sustainable Energy Reviews, 43, 164-177(2015) [19] SIDIK, N. A. C., ADAMU, I. M., JAMIL, M. M., KEFAYATI, G. H. R., MAMAT, R., and NAJAFI, G. Recent progress on hybrid nanofluids in heat transfer applications:a comprehensive review. International Communications in Heat and Mass Transfer, 8, 68-79(2016) [20] SUNDAR, L. S., SHARMA, K. V., SINGH, M. K., and SOUSA, A. C. M. Hybrid nanofluids preparation, thermal properties, heat transfer and friction factor-a review. Renewable and Sustainable Energy Reviews, 68, 185-198(2017) [21] BABU, J. R., KUMAR, K. K., and RAO, S. S. State-of-art review on hybrid nanofluids. Renewable and Sustainable Energy Reviews, 77, 551-565(2017) [22] SURESH, S., VENKITARAJ, K. P., SELYAKUMAR, P., and CHANDRASEKAR, M. Synthesis of Al2O3-Cu/water hybrid nanofluids using two step method and its thermo physical properties. Colloids and Surfaces A:Physicochemical and Engineering Aspects, 388, 41-48(2011) [23] KHANAFER, K. and VAFAI, K. Applications of nanofluids in porous medium. Journal of Thermal Analysis and Calorimetry, 135, 1479-1492(2019) [24] SHEREMET, M. A., CÎMPEAN, D. S., and POP, I. Thermogravitational convection of hybrid nanofluid in a porous chamber with a central heat-conducting body. Symmetry, 12, 593(2020) [25] DEVI, S. P. A. and DEVI, S. S. U. Numerical investigation of hydromagnetic hybrid Cu/water nanofluid flow over a permeable stretching sheet with suction. De Gruyter Ijnsns, 17, 249-257(2016) [26] DEVI, S. S. U. and DEVI, S. P. A. Numerical investigation of three-dimensional hybrid CuAl2O3/water nanofluid flow over a stretching sheet with effecting Lorentz force subject to Newtonian heating. Canadian Journal of Physics, 94, 490-496(2016) [27] DEVI, S. S. U. and DEVI, S. P. A. Heat transfer enhancement of Cu-Al2O3/water hybrid nanofluid flow over a stretching sheet. Journal of the Nigerian Mathematical Society, 36, 419-433(2017) [28] TAYEBI, T. and CHAMKHA, A. J. Buoyancy-driven heat transfer enhancement in a sinusoidally heated enclosure utilizing hybrid nanofluid. Computational Thermal Sciences:an International Journal, 9, 405-421(2017) [29] GHADIKOLAEI, S. S., YASSARI, M., SADEGHI, H., HOSSEINZADEH, K., and GANJI, D. D. Investigation on thermophysical properties of TiO2-Cu/H2O hybrid nanofluid transport dependent on shape factor in MHD stagnation point flow. Powder Technology, 322, 428-438(2017) [30] YOUSEFI, R. M., DINARVAND, S., YAZDI, M. E., and POP, I. Stagnation-point flow of an aqueous titania-copper hybrid nanofluid toward a wavy cylinder. International Journal of Numerical Methods for Heat and Fluid Flow, 28, 1716-1735(2018) [31] HAYAT, T., NADEEM, S., and KHAN, A. U. Rotating flow of Ag-CuO/H2O hybrid nanofluid with radiation and partial slip boundary effects. The European Physical Journal, 41, 75(2018) [32] ALY, E. and POP, I. MHD flow and heat transfer over a permeable stretching/shrinking sheet in a hybrid nanofluid with a convective boundary condition. International Journal of Numerical Methods for Heat and Fluid Flow, 29, 3012-3038(2019) [33] ALY, E. H. and POP, I. MHD flow and heat transfer near stagnation point over a stretching/shrinking surface with partial slip and viscous dissipation:hybrid nanofluid versus nanofluid. Powder Technology, 367, 192-205(2020) [34] KHASHI'IE, N. S., ARIFIN, N. M., NAZAR, R., HAFIDZUDDIN, E. H., WAHI, N., and POP, I. Magnetohydrodynamics (MHD) axisymmetric flow and heat transfer of a hybrid nanofluid past a radially permeable stretching/shrinking sheet with Joule heating. Chinese Journal of Physics, 64, 251-263(2020) [35] WAINI, I., ISHAK, A., and POP, I. Hybrid nanofluid flow and heat transfer over a nonlinear permeable stretching/shrinking surface. International Journal of Numerical Methods for Heat and Fluid Flow, 29, 3110-3127(2019) [36] WAINI, I., ISHAK, A., and POP, I. Flow and heat transfer along a permeable stretching/shrinking curved surface in a hybrid nanofluid. Physica Scripta, 94, 105219(2019) [37] TAKABI, B. and SALEHI, S. Augmentation of the heat transfer performance of a sinusoidal corrugated enclosure by employing hybrid nanofluid. Advances in Mechanical Engineering, 6, 147059(2015) [38] PARVEEN, R. and MAHAPATRA, T. R. Numerical simulation of MHD double diffusive natural convection and entropy generation in a wavy enclosure filled with nanofluid with discrete heating. Heliyon, 5, 02496(2019) [39] YU, P. X., QIU, J. X., QIN, Q., and TIAN, Z. F. Numerical investigation of natural convection in a rectangular cavity under different directions of uniform magnetic field. International Journal of Heat Mass and Transfer, 67, 1131-1144(2013) |