[1] HUGHES, G. O. and GRIGGITHS, R. W. Horizontal convection. Annual Review of Fluid Mechanics, 40, 185-208(2008) [2] HOUGHTON, J. The Physics of Atmospheres, Cambridge University Press, London (2002) [3] WANG, K. P., LI, Q. X., and DONG, Y. H. Transport of dissolved oxygen at the sediment-water interface in the spanwise oscillating flow. Applied Mathematics and Mechanics (English Edition), 42(4), 527-540(2021) https://doi.org/10.1007/s10483-021-2719-6 [4] CUSHMANROISIN, B. and BECKERS, J. M. Introduction to Geophysical Fluid Dynamics, Academic Press, Salt Lake City (2011) [5] COOPER, A. R. JR and KINGERY, W. D. Dissolution in ceramic systems:I, molecular diffusion, natural convection, and forced convection studies of sapphire dissolution in calcium aluminum silicate. Journal of the American Ceramic Society, 47(1), 37-43(1964) [6] ZHANG, Y. Z., SUN, C., BAO, Y., and ZHOU, Q. How surface roughness reduces heat transport for small roughness heights in turbulent Rayleigh-Bénard convection. Journal of Fluid Mechanics, 836, R2(2018) [7] DONG, D. L., WANG, B. F., DONG, Y. H., HUANG, Y. X., and ZHOU, Q. Influence of spatial arrangements of roughness elements on turbulent Rayleigh-Bénard convection. Physics of Fluids, 32, 045114(2020) [8] ZHANG, S., CHEN, X., XIA, Z., XI, H. D., and CHEN, S. Stabilizing/destabilizing the large-scale circulation in turbulent Rayleigh-Bénard convection with sidewall temperature control. Journal of Fluid Mechanics, 915, A14(2021) [9] WANG, B. F., ZHOU, Q., and SUN, C. Vibration-induced boundary-layer destabilization achieves massive heat-transport enhancement. Science Advances, 6, eaaz8239(2020) [10] WU, J. Z., DONG, Y. H., WANG, B. F., and ZHOU, Q. Phase decomposition analysis on oscillatory Rayleigh-Bénard turbulence. Physics of Fluids, 33, 045108(2021) [11] TSAI, T., HUSAM, W. K., KING, M. P., and SHEARD, G. J. Transitions and scaling in horizontal convection driven by different temperature profiles. International Journal of Thermal Sciences, 148, 106166(2020) [12] WAGNER, S. and SHISHKINA, O. Aspect ratio dependency of Rayleigh-Bénard convection in box-shaped containers. Physics of Fluids, 25, 085110(2013) [13] XIONG, X. M. and TAO, J. J. Lower bound for transient growth of inclined buoyancy layer. Applied Mathematics and Mechanics (English Edition), 38(6), 779-796(2017) https://doi.org/10.1007/s10483-017-2202-8 [14] SUN, C. S., LIU, S., WANG, Q., WAN, Z. H., and SUN, D. J. Bifurcations in penetrative Rayleigh-Bénard convection in a cylindrical container. Applied Mathematics and Mechanics (English Edition), 40(5), 695-704(2019) https://doi.org/10.1007/s10483-019-2474-6 [15] XU, A., SHI, L., and XI, H. D. Lattice Boltzmann simulations of three-dimensional thermal convective flows at high Rayleigh number. International Journal of Heat and Mass Transfer, 140, 359-370(2019) [16] LIU, S. and HUISMAN, S. Heat transfer enhancement in Rayleigh-Bénard convection using a single passive barrier. Physical Review Fluids, 5(12), 123502(2020) [17] YANG, J. L., ZHANG, Y. Z., JIN, T. C., DONG, Y. H., WANG, B. F., and ZHOU, Q. The P r-dependence of the critical roughness height in two-dimensional turbulent Rayleigh-Bénard convection. Journal of Fluid Mechanics, 911, A52(2021) [18] GAYEN, B., GRIFFITHS, R., and HUGHES,G. Stability transitions and turbulence in horizontal convection. Journal of Fluid Mechanics, 751, 698-724(2014) [19] ROSSBY, H. T. On thermal convection driven by non-uniform heating from below:an experimental study. Deep-Sea Research and Oceanographic Abstracts, 12(1), 9-16(1965) [20] ROSSBY, H. T. Numerical experiments with fluid heated non-uniformly from below. Tellus A, 50, 242-257(1998) [21] MULLARNEY, J., GRIGGITHES, R., and HUGHES, G. Convection driven by differential heating at a horizontal boundary. Journal of Fluid Mechanics, 516, 181-209(2004) [22] CHIU-WEBSTER, S., HINCH, J., and LISTER, J. Horizontal infinite-Prandtl-number convection. 59th Annual Meeting of the APS Division of Fluid Dynamics, American Physical Society, Tampa Bay, Florida (2006) [23] WANG, W. and HUANG, R. X. An experimental study on thermal circulation driven by horizontal differential heating. Journal of Fluid Mechanics, 540, 49-73(2005) [24] HUGHES, G. O., GRIFFITHS, R. W., MULLARNEY, J. C., and PETERSON, W. H. A theoretical model for horizontal convection at high Rayleigh number. Journal of Fluid Mechanics, 581, 251-276(2007) [25] STEWART, K. D., HUGHES, G. O., and GRIFFITHS, R. W. The role of turbulent mixing in an overturning circulation maintained by surface buoyancy forcing. Journal of Physical Oceanography, 42(11), 1907-1922(2012) [26] SIGGERS, J. H., KERSWELL, R. R., and BALMFORTH, N. J. Bounds on horizontal convection. Journal of Fluid Mechanics, 517, 55-70(2004) [27] COMAN, M. A., GRIFFITHS, R. W., and HUGHES, G. O. The sensitivity of convection from a horizontal boundary to the distribution of heating. Journal of Fluid Mechanics, 647, 71-90(2010) [28] SHISHKINA, O. and WAGNER, S. Prandtl-number dependence of heat transport in laminar horizontal convection. Physical Review Letters, 116(2), 024302(2016) [29] SHEARD, G. J. and KING, M. P. Horizontal convection:effect of aspect ratio on Rayleigh number scaling and stability. Applied Mathematical Modelling, 35(4), 1647-1655(2011) [30] WINTERS, K. B. and YOUNG, W. R. Available potential energy and buoyancy variance in horizontal convection. Journal of Fluid Mechanics, 629, 221-230(2009) [31] SHISHKINA, O., GROSSMANN, S., and LOHSE, D. Heat and momentum transport scalings in horizontal convection. Geophysical Research Letters, 43(3), 1219-1225(2016) [32] GROSSMANN, S. and LOHSE, D. Scaling in thermal convection:a unifying view. Journal of Fluid Mechanics, 407, 27-56(2000) [33] WANG, Q., XU, B. L., XIA, S. N., WAN, Z. H., and SUN, D. J. Thermal convection in a tilted rectangular cell with aspect ratio 0.5. Chinese Physics Letters, 34(10), 104401(2017) [34] ZHANG, Y. Z., XIA, S. N., DONG, Y. H., WANG, B. F., and ZHOU, Q. An efficient parallel algorithm for DNS of buoyancy-driven turbulent flows. Journal of Hydrodynamics, 31, 1159-1169(2019) |