[1] SUTTERBY, J. L. Laminar converging flow of dilute polymer solutions in conical sections:part I, viscosity data, new viscosity model, tube flow solution. AIChE Journal, 12, 63-68(1966) [2] REHMAN, S., MIR, N. A., ALQARNI, M. S., FAROOQ, M., and MALIK, M. Y. Analysis of heat generation/absorption in thermally stratified Sutterby fluid flow with Cattaneo-Christov theory. Microsystem Technologies, 25, 3365-3373(2019) [3] HAYAT, T., BIBI, F., KHAN, A. A., and ALSAEDI, A. Entropy production minimization and non-Darcy resistance within wavy motion of Sutterby liquid subject to variable physical characteristics. Journal of Thermal Analysis and Calorimetry, 143, 2215-2225(2021) [4] IMRAN, N., JAVED, M., SOHAIL, M., THOUNTHONG, P., and ABDELMALEK, Z. Theoretical exploration of thermal transportation with chemical reactions for Sutterby fluid model obeying peristaltic mechanism. Journal of Materials Research and Technology, 9, 7449-7459(2020) [5] USMAN, M., LIN, P., and GHAFFARI, A. Heat and mass transfer in a steady flow of Sutterby nanofluid over the surface of a stretching wedge. Physica Scripta, 96, 065003(2021) [6] HAYAT, T., KHAN, A. A., BIBI, F., and ALSAEDI, A. Entropy minimization for magneto peristaltic transport of Sutterby materials subject to temperature dependent thermal conductivity and non-linear thermal radiation. International Communications in Heat and Mass Transfer, 122, 105009(2021) [7] KARMAN, T. V. Classical problem of rotating disk. Transfer ASME, 61, 705(1939) [8] MAHANTHESH, B., GIREESHA, B. J., ANIMASAUN, I. L., MUHAMMAD, T., and SHASHIKUMAR, N. S. MHD flow of SWCNT and MWCNT nanoliquids past a rotating stretchable disk with thermal and exponential space dependent heat source. Physica Scripta, 94, 085214(2019) [9] NAZ, R., MABOOD, F., SOHAIL, M., and TLILI, I. Thermal and species transportation of Eyring-Powell material over a rotating disk with swimming microorganisms:applications to metallurgy. Journal of Materials Research and Technology, 9, 5577-5590(2020) [10] KHAN, M. I., WAQAS, H., FAROOQ, U., KHAN, S. U., CHU, Y., and KADRY, S. Assessment of bioconvection in magnetized Sutterby nanofluid configured by a rotating disk:a numerical approach. Modern Physics Letters B, 35, 2150202(2021) [11] HAFEEZ, A., KHAN, M., AHMED, A., and AHMED, J. Rotational flow of Oldroyd-B nanofluid subject to Cattaneo-Christov double diffusion theory. Applied Mathematics and Mechanics (English Edition), 41(7), 1083-1094(2020) https://doi.org/10.1007/s10483-020-2629-9 [12] AHMED, A., KHAN, M., AHMED, J., and HAFEEZ, A. Von Kármán rotating flow of Maxwell nanofluids featuring the Cattaneo-Christov theory with a Buongiorno model. Applied Mathematics and Mechanics (English Edition), 41(8), 1195-1208(2020) https://doi.org/10.1007/s10483-020-2632-8 [13] SARKAR, G. M. and SAHOO, B. On dual solutions of the unsteady MHD flow on a stretchable rotating disk with heat transfer and a linear temporal stability analysis. European Journal of Mechanics-B/Fluids, 85, 149-157(2021) [14] WAQAS, M. A study on magneto-hydrodynamic non-Newtonian thermally radiative fluid considering mixed convection impact towards convective stratified surface. International Communications in Heat and Mass Transfer, 126, 105262(2021) [15] FOURIER, J. B. J. Théorie Analytique de la chaleur, Gauthiers-Villars, Paris (1888) [16] CATTANEO, C. Sulla conduzione del calore. Atti Semin. Mat. Fis. Univ. Modena Reggio Emilia, 3, 83-101(1948) [17] CHRISTOV, C. I. On frame indifferent formulation of the Maxwell-Cattaneo model of finite-speed heat conduction. Mechanics, Research Communications, 36, 481-486(2009) [18] STRAUGHAN, B. Thermal convection with the Cattaneo-Christov model. International Journal of Heat and Mass Transfer, 53, 95-98(2010) [19] KHAN, M. I., KHAN, M. I., ALZAHRANI, F., HOBINY, A., and ALI, Z. Modeling of CattaneoChristov double diffusions (CCDD) in Williamson nanomaterial slip flow subject to porous medium. Journal of Materials Research and Technology, 9, 6172-6177(2020) [20] HAFEEZ, A. and KHAN, M. Flow of Oldroyd-B fluid caused by a rotating disk featuring the Cattaneo-Christov theory with heat generation/absorption. International Communications in Heat and Mass Transfer, 123, 105179(2021) [21] HAYAT, T., KHAN, S. A., KHAN, M. I., MOMANI, S., and ALSAEDI, A. Cattaneo-Christov (CC) heat flux model for nanomaterial stagnation point flow of Oldroyd-B fluid. Computer Methods and Programs in Biomedicine, 187, 105247(2020) [22] ABID, N., RAMZAN, M., CHUNG, J. D., KADRY, S., and CHU, Y. M. Comparative analysis of magnetized partially ionized copper, copper oxide-water and kerosene oil nanofluid flow with Cattaneo-Christov heat flux. Scientific Reports, 10, 19300(2020) [23] ALI, B., HUSSEIN, S., NIE, Y., HUSSEIN, A. K., and HABIB, D. Finite element investigation of Dufour and Soret impacts on MHD rotating flow of Oldroyd-B nanofluid over a stretching sheet with double diffusion Cattaneo Christov heat flux model. Powder Technology, 377, 439-452(2021) [24] IBRAHIM, W. and GADISA, G. Finite element solution of nonlinear convective flow of Oldroyd-B fluid with Cattaneo-Christov heat flux model over nonlinear stretching sheet with heat generation or absorption. Propulsion and Power Research, 9, 304-315(2020) [25] ALAMRI, S. Z., ELLAHI, R., SHEHZAD, N., and ZEESHAN, A. Convective radiative plane Poiseuille flow of nanofluid through porous medium with slip:an application of Stefan blowing. Journal of Molecular Liquids, 273, 292-304(2019) [26] BEG, O. A., ZOHRA, F. T., UDDIN, M. J., ISMAIL, A. I. M., and SATHASIVAM, S. Energy conservation of nanofluids from a biomagnetic needle in the presence of Stefan blowing:Lie symmetry and numerical simulation. Case Studies in Thermal Engineering, 24, 100861(2021) [27] ABDELMALEK, Z., MAHANTHESH, B., BASIR, M. F. M., IMTIAZ, M., MACKOLIL, J., KHAN, N. S., NABWEY, H. A., and TLILI, I. Mixed radiated magneto Casson fluid flow with Arrhenius activation energy and Newtonian heating effects:flow and sensitivity analysis. Alexandria Engineering Journal, 59, 3991-4011(2020) [28] ALI, B., HUSSAIN, S., ABDAL, S., and MEHDI, M. M. Impact of Stefan blowing on thermal radiation and Cattaneo-Christov characteristics for nanofluid flow containing microorganisms with ablation/accretion of leading edge:FEM approach. The European Physical Journal Plus, 135, 10(2020) [29] UDDIN, M. J., KABIR, M. N., and BEG, O. A. Computational investigation of Stefan blowing and multiple-slip effects on buoyancy-driven bioconvection nanofluid flow with microorganisms. International Journal of Heat and Mass Transfer, 95, 116-130(2016) [30] BASIR, M. F. M., BILAL, M., CHOUDHARY, R., MACKOLIL, J., MAHANTHESH, B., and NISAR, K. S. Numerical and sensitivity analysis of MHD bioconvective slip flow of nanomaterial with binary chemical reaction and Newtonian heating. Heat Transfer, 50, 5439-5466(2021) [31] KHAN, M. I., QAYYUM, S., and HAYAT, T. Stratified flow of Sutterby fluid with homogeneousheterogeneous reactions and Cattaneo-Christov heat flux. International Journal of Numerical Methods for Heat & Fluid Flow, 29, 2977-2992(2019) [32] LATIFF, N. A., UDDIN, M. U., and ISMAIL, A. I. M. Stefan blowing effect on bioconvective flow of nanofluid over a solid rotating stretchable disk. Propulsion of Power Research, 5, 267-278(2016) |