[1] Byers R. A Hamiltonian QR-algorithm[J]. SIAMJSci Statist Comput,1986,7:212-229. [2] Bunse-Gerstner A, Byers R, Mehrmann V. A chat of numerical methods for structured eigenvalue problems[J]. SIAM J Matrix Anal Appl, 1992,13:419-453. [3] Bunse-Gerstner A, Mehrmann V. A symplectic QR-like algorithm for the solution of the real alge braic Riccati equation[J]. IEEE Trans Automat Control, 1986,31:1104-1113. [4] Hench J J, Laub A J. Numerical solution of the discrete-time periadic Riccati equation[J]. IEEETrans Automat Control, 1994,39: 1197-1210. [5] Lin W W. A new method for computing the closed loop eigenvalues of a discrete-time algebraic Riccati equation[J]. Linear Algebra Appl, 1987,96:157-180. [6] Lu L Z, Lin W W. An iterative algorithm for the solution of a discrete-time algebraic Riccati equation[J]. Linear Algebra Appl, 1993,188/189:465-488. [7] Lin W W, Wang C. On computing stable Lagrangian subspaces of Hamiltonian martices and sym plectic pencils[J]. SIAM J Matrix Anal Appl , 1997,18: 590-614. [8] Pappas C, Laub A J, Sandell N R. On the numerical solution of the discrete-time algebraic Riccati equation[J]. IEEE Trans Autorm Control, 1980,25:631-641. [9] Patel R V. On computing the eigenvalues of a symplectic pencils[J]. Linear Algebra Appl, 1993, 188:591-611. [10] Patel R V, Lin Z, Misra P. Computation of stable invariant subspaces of Hamiltonian matrices[J]. SIAM J Matrix Anal Appl , 1994,15:284-298. [11] Benner P, Mehrmann V, Xu H. A numerically stable, structure preserving method for computing the eigenvalues or real Hamiltonian or symplectic pencils[J]. Numer Math, 1998,78:329-358. [12] Bunse-Gerstner A, Mehrmann V, Watkins D. An SR algorithm for Hamiltonian matrices, based on Gaussian elimination[J]. Methods Oper Res, 1989,58: 339-358. [13] Mehrmann V. A symplectic orthogonal method for single input or single output discrete time opti mal quadratic control problems[J]. SIAM J Matrix Anal Appl, 1988,9: 221-247. [14] Van Loan C. A symplectic method for approximating all the eigenvalues of a Hamiltonian matrix[J]. Linear Algebra Appl ,1984 ,16:233-251. [15] Golub G H, Van Loan C. Matrix Computations[M]. Baltimore: The Johns Hopkins University Press, 1996. [16] Stewart G W. Introduction to Matrix Computations[M]. New York: Academic, 1973. [17] Wilkinson J H. The Algebraic Eigenvalue Problem[M]. Clarendon: Oxford,1965. [18] Benner P, Faeebender H. An implicity restarted symplectic lanczos method for the Hamiltonian eig envalue problem[J]. Linear Algebra Appl, 1997,263: 75-111. |