Applied Mathematics and Mechanics (English Edition) ›› 2024, Vol. 45 ›› Issue (11): 1895-1912.doi: https://doi.org/10.1007/s10483-024-3185-8
• Articles • Previous Articles Next Articles
Lanbin ZHANG1,2, Yixiang HE3, Bo MENG4, Huliang DAI3,*(), Lin WANG3
Received:
2024-05-01
Online:
2024-11-03
Published:
2024-10-30
Contact:
Huliang DAI
E-mail:daihulianglx@hust.edu.cn
Supported by:
2010 MSC Number:
Lanbin ZHANG, Yixiang HE, Bo MENG, Huliang DAI, Lin WANG. Unlocking multidirectional and broadband wind energy harvesting with triboelectric nanogenerator and vortex-induced vibration of sphere. Applied Mathematics and Mechanics (English Edition), 2024, 45(11): 1895-1912.
Fig. 1
(a) 2D schematic of ideal OWTENG; (b) simulation diagram of electrostatic field between UEP and LEP when OWTENG is working; (c) 3D diagram of assembled OWTENG; (d) physical prototype of assembled OWTENG; (e) simplified spring oscillator model of OWTENG; (f) simplified capacitance model of TENG unit (color online)"
Fig. 3
Variations of (a) lift and (b) drag coefficients with reduced speed; (c) and (d) comparison of experimental and numerical results of sphere's vibrational displacement and OWTENG's peak open-circuit voltage for different wind speeds; (e) and (f) comparison of experimental and numerical results of time-history curves of sphere's vibrational displacement and OWTENG's open-circuit voltage for wind speed of 5.72 m/s, where "Exp." denotes experimental results, and "Num." represents numerical results (color online)"
Fig. 11
Variations of (a) RMS voltage and (b) average power of OWTENG-A connected to 100 MΩ resistor with wind speed for different wind directions; contour maps of (c) RMS voltage and (d) average power of OWTENG-A connected to 100 MΩ resistor for different wind directions and wind speeds (color online)"
1 | ZEADALLY,S.,SHAIKH,F. K.,TALPUR,A., andSHENG,Q. Z.Design architectures for energy harvesting in the Internet of Things.Renewable and Sustainable Energy Reviews,128,109901(2020) |
2 | SARKER,M. R.,RIAZ,A.,LIPU,M. S. H.,SAAD,M. H. M.,AHMAD,M. N.,KADIR,R. A., andOLAZAGOITIA,J. L.Micro energy harvesting for IoT platform: review analysis toward future research opportunities.Heliyon,10(6),e27778(2024) |
3 | WANG,J.,YURCHENKO,D.,HU,G.,ZHAO,L.,TANG,L., andYANG,Y.Perspectives in flow-induced vibration energy harvesting.Applied Physics Letters,119,100502(2021) |
4 | QI,L.,PAN,H.,PAN,Y.,LUO,D.,YAN,J., andZHANG,Z.A review of vibration energy harvesting in rail transportation field.IScience,25,103849(2022) |
5 | QIAN,X.,ZHAO,Y.,ALSAID,Y.,WANG,X.,HUA,M.,GALY,T.,GOPALAKRISHNA,H.,YANG,Y.,CUI,J.,LIU,N.,MARSZEWSKI,M.,PILON,L.,JIANG,H., andHE,X.Artificial phototropism for omnidirectional tracking and harvesting of light.Nature Nanotechnology,14,1048-1055(2019) |
6 | MA,Z.,WANG,Y.,WANG,S., andYANG,Y.Ocean thermal energy harvesting with phase change material for underwater glider.Applied Energy,178,557-566(2016) |
7 | TAN,Y.,DONG,Y., andWANG,X.Review of MEMS electromagnetic vibration energy harvester.Journal of Microelectromechanical Systems,26,1-16(2017) |
8 | WANG,W.,ZHANG,Y.,WEI,Z. H., andCAO,J.Design and numerical investigation of an ultra-wide bandwidth rolling magnet bistable electromagnetic harvester.Energy,261,125311(2022) |
9 | FAN,K.,XIA,P.,ZHANG,Y.,QU,H.,LIANG,G.,WANG,F., andZUO,L.Achieving high electric outputs from low-frequency motions through a double-string-spun rotor.Mechanical Systems and Signal Processing,155,107648(2021) |
10 | XU,M.,WANG,B.,LI,X.,ZHOU,S., andYURCHENKO,D.Dynamic response mechanism of the galloping energy harvester under fluctuating wind conditions.Mechanical Systems and Signal Processing,166,108410(2022) |
11 | ZHANG,Y.,CHENG,G.,SEOK,J.,DING,J., andSUN,W.Enhancing output performance of galloping-based energy harvesting using asymmetric bluff body.Ocean Engineering,294,116793(2024) |
12 | NASEER,R., andABDELKEFI,A.Nonlinear modeling and efficacy of VIV-based energy harvesters: monostable and bistable designs.Mechanical Systems and Signal Processing,169,108775(2022) |
13 | ERTURK,A.,VIEIRA,W. G. R.,DE MARQUI,C., andINMAN,D. J.On the energy harvesting potential of piezoaeroelastic systems.Applied Physics Letters,96,184103(2010) |
14 | ZHAO,D.,HU,X.,TAN,T.,YAN,Z., andZHANG,W.Piezoelectric galloping energy harvesting enhanced by topological equivalent aerodynamic design.Energy Conversion and Management,222,113260(2020) |
15 | ZHAO,C.,HU,G., andYANG,Y.A cantilever-type vibro-impact triboelectric energy harvester for wind energy harvesting.Mechanical Systems and Signal Processing,177,109185(2022) |
16 | YAN,Z.,WANG,L.,HAJJ,M. R.,YAN,Z.,SUN,Y., andTAN,T.Energy harvesting from iced-conductor inspired wake galloping.Extreme Mechanics Letters,35,100633(2020) |
17 | MA,X.,ZHANG,H.,MARGIELEWICZ,J.,GşKA,D.,WOLSZCZAK,P.,LITAK,G., andZHOU,S.A dual-beam piezo-magneto-elastic wake-induced vibration energy harvesting system for high-performance wind energy harvesting.Science China-Technological Sciences,67,221-239(2024) |
18 | LIU,S.,LI,P., andYANG,Y.On the design of an electromagnetic aeroelastic energy harvester from nonlinear flutter.Meccanica,53,2807-2831(2018) |
19 |
WANG,Q.,CHEN,Z.,ZHAO,L.,LI,M.,ZOU,H.,WEI,K.,ZHANG,X., andZHANG,W.Enhanced galloping energy harvester with cooperative mode of vibration and collision.Applied Mathematics and Mechanics (English Edition),43,945-958(2022)
doi: 10.1007/s10483-022-2869-9 |
20 | GAO,W.,SHAO,J.,SAGOE-CRENTSIL,K., andDUAN,W.Investigation on energy efficiency of rolling triboelectric nanogenerator using cylinder-cylindrical shell dynamic model.Nano Energy,80,105583(2021) |
21 | XIE,Z.,ZENG,Z.,WANG,Y.,YANG,W.,XU,Y.,LU,X.,CHENG,T.,ZHAO,H., andWANG,Z. L.Novel sweep-type triboelectric nanogenerator utilizing single freewheel for random triggering motion energy harvesting and driver habits monitoring.Nano Energy,68,104360(2020) |
22 | WANG,Q.,ZOU,H. X.,ZHAO,L. C.,LI,M.,WEI,K. X.,HUANG,L. P., andZHANG,W. M.A synergetic hybrid mechanism of piezoelectric and triboelectric for galloping wind energy harvesting.Applied Physics Letters,117,043902(2020) |
23 |
LI,H.,ZHENG,T.,QIN,W.,TIAN,R.,DING,H.,JI,J. C., andCHEN,L.Theoretical and experimental study of a bi-stable piezoelectric energy harvester under hybrid galloping and band-limited random excitations.Applied Mathematics and Mechanics (English Edition),45,461-478(2024)
doi: 10.1007/s10483-024-3098-5 |
24 | FAN,K.,WEI,D.,ZHANG,Y.,WANG,P.,TAO,K., andYANG,R.A whirligig-inspired intermittent-contact triboelectric nanogenerator for efficient low-frequency vibration energy harvesting.Nano Energy,90,106576(2021) |
25 | KIM,W.,BHATIA,D.,JEONG,S., andCHOI,D.Mechanical energy conversion systems for triboelectric nanogenerators: kinematic and vibrational designs.Nano Energy,56,307-321(2019) |
26 |
CAO,D.,XIA,W., andHU,W.Low-frequency and broadband vibration energy harvester driven by mechanical impact based on layer-separated piezoelectric beam.Applied Mathematics and Mechanics (English Edition),40,1777-1790(2019)
doi: 10.1007/s10483-019-2542-5 |
27 | CHEN,B.,YANG,Y., andWANG,Z. L.Scavenging wind energy by triboelectric nanogenerators.Advanced Energy Materials,8,1702649(2018) |
28 | REN,Z.,WU,L.,PANG,Y.,ZHANG,W., andYANG,R.Strategies for effectively harvesting wind energy based on triboelectric nanogenerators.Nano Energy,100,107522(2022) |
29 | BAE,J.,LEE,J.,KIM,S.,HA,J.,LEE,B. S.,PARK,Y.,CHOONG,C.,KIM,J. B.,WANG,Z. L.,KIM,H. Y.,PARK,J. J., andCHUNG,U. I.Flutter-driven triboelectrification for harvesting wind energy.Nature Communications,5,4929(2014) |
30 | RAVICHANDRAN,A. N.,CALMES,C.,SERRES,J. R.,RAMUZ,M., andBLAYAC,S.Compact and high performance wind actuated venturi triboelectric energy harvester.Nano Energy,62,449-457(2019) |
31 | PHAN,H.,SHIN,D. M.,JEON,S. H.,KANG,T. Y.,HAN,P.,KIM,G. H.,KIM,H. K.,KIM,K.,HWANG,Y. H., andHONG,S. W.Aerodynamic and aeroelastic flutters driven triboelectric nanogenerators for harvesting broadband airflow energy.Nano Energy,33,476-484(2017) |
32 | ZHAO,Z.,PU,X.,DU,C.,LI,L.,JIANG,C.,HU,W., andWANG,Z. L.Freestanding flag-type triboelectric nanogenerator for harvesting high-altitude wind energy from arbitrary directions.ACS Nano,10,1780-1787(2016) |
33 | KO,H. J.,KWON,D. S.,BAE,K., andKIM,J.Self-suspended shell-based triboelectric nanogenerator for omnidirectional wind-energy harvesting.Nano Energy,96,107062(2022) |
34 | DAI,S.,LI,X.,JIANG,C.,ZHANG,Q.,PENG,B.,PING,J., andYING,Y.Omnidirectional wind energy harvester for self-powered agro-environmental information sensing.Nano Energy,91,106686(2022) |
35 | ZHANG,L.,MENG,B.,TIAN,Y.,MENG,X.,LIN,X.,HE,Y.,XING,C.,DAI,H., andWANG,L.Vortex-induced vibration triboelectric nanogenerator for low speed wind energy harvesting.Nano Energy,95,107029(2022) |
36 | LI,W.,LU,L.,FU,X.,ZHANG,C.,LOOS,K., andPEI,Y.Kármán vortex street driven membrane triboelectric nanogenerator for enhanced ultra-low speed wind energy harvesting and active gas flow sensing.ACS Applied Materials & Interfaces,14,51018-51028(2022) |
37 | WANG,Y.,CHEN,T.,SUN,S.,LIU,X.,HU,Z.,LIAN,Z.,LIU,L.,SHI,Q.,WANG,H.,MI,J.,ZHOU,T.,LEE,C., andXU,M.A humidity resistant and high performance triboelectric nanogenerator enabled by vortex-induced vibration for scavenging wind energy.Nano Research,15,3246-3253(2022) |
38 | GOVARDHAN,R. N., andWILLIAMSON,C. H. K.Vortex-induced vibrations of a sphere.Journal of Fluid Mechanics,531,11-47(2005) |
39 | JAUVTIS,N.,GOVARDHAN,R., andWILLIAMSON,C. H. K.Multiple modes of vortex-induced vibration of a sphere.Journal of Fluids and Structures,15,555-563(2001) |
40 | BEHARA,S., andSOTIROPOULOS,F.Vortex-induced vibrations of an elastically mounted sphere: the effects of Reynolds number and reduced velocity.Journal of Fluids and Structures,66,54-68(2016) |
41 | RAJAMUNI,M. M.,THOMPSON,M. C., andHOURIGAN,K.Vortex-induced vibration of elastically-mounted spheres: a comparison of the response of three degrees of freedom and one degree of freedom systems.Journal of Fluids and Structures,89,142-155(2019) |
42 | RAJAMUNI,M. M.,THOMPSON,M. C., andHOURIGAN,K.Transverse flow-induced vibrations of a sphere.Journal of Fluid Mechanics,837,931-966(2018) |
43 | ZHANG,L.,HE,Y.,MENG,B.,DAI,H.,ABDELKEFI,A., andWANG,L.Omnidirectional wind piezoelectric energy harvesting.Journal of Physics D: Applied Physics,56,234003(2023) |
44 | NIU,S.,WANG,S.,LIN,L.,LIU,Y.,ZHOU,Y. S.,HU,Y., andWANG,Z. L.Theoretical study of contact-mode triboelectric nanogenerators as an effective power source.Energy & Environmental Science,6,3576(2013) |
45 | SUN,W.,JIANG,Z.,XU,X.,HAN,Q., andCHU,F.Electromechanical coupling modeling and analysis of contact-separation mode triboelectric nanogenerators.International Journal of Non-Linear Mechanics,136,103773(2021) |
46 | FACCHINETTI,M. L.,DE LANGRE,E., andBIOLLEY,F.Coupling of structure and wake oscillators in vortex-induced vibrations.Journal of Fluids and Structures,19,123-140(2004) |
47 | MI,L., andGOTTLIEB,O.Asymptotic model-based estimation of a wake oscillator for a tethered sphere in uniform flow.Journal of Fluids and Structures,54,361-389(2015) |
48 | BRAKE,M. R.The effect of the contact model on the impact-vibration response of continuous and discrete systems.Journal of Sound and Vibration,332,3849-3878(2013) |
49 | SAREEN,A.,ZHAO,J.,LO JACONO,D.,SHERIDAN,J.,HOURIGAN,K., andTHOMPSON,M. C.Vortex-induced vibration of a rotating sphere.Journal of Fluid Mechanics,837,258-292(2018) |
50 | MA,X.,LI,Z.,ZHANG,H., andZHOU,S.Dynamic modeling and analysis of a tristable vortex-induced vibration energy harvester.Mechanical Systems and Signal Processing,187,109924(2023) |
[1] | Feixiang TANG, Shaonan SHI, Siyu HE, Fang DONG, Sheng LIU. Size-dependent vibration and buckling of porous functionally graded microplates based on modified couple stress theory in thermal environments by considering a dual power-law distribution of scale effects [J]. Applied Mathematics and Mechanics (English Edition), 2024, 45(12): 2075-2092. |
[2] | Jinxin DOU, Zhenping LI, Hongliang YAO, Muchuan DING, Guochong WEI. Torsional vibration suppression and electromechanical coupling characteristics of electric drive system considering misalignment [J]. Applied Mathematics and Mechanics (English Edition), 2024, 45(11): 1987-2010. |
[3] | Zhi LI, Cuiying FAN, Mingkai GUO, Guoshuai QIN, Chunsheng LU, Dongying LIU, Minghao ZHAO. Natural frequency analysis of laminated piezoelectric beams with arbitrary polarization directions [J]. Applied Mathematics and Mechanics (English Edition), 2024, 45(11): 1949-1964. |
[4] | Jianing LIU, Jinqiang LI, Ying WU. Bandgap adjustment of a sandwich-like acoustic metamaterial plate with a frequency-displacement feedback control method [J]. Applied Mathematics and Mechanics (English Edition), 2024, 45(10): 1807-1820. |
[5] | Peng SHENG, Xin FANG, Dianlong YU, Jihong WEN. Nonlinear metamaterial enabled aeroelastic vibration reduction of a supersonic cantilever wing plate [J]. Applied Mathematics and Mechanics (English Edition), 2024, 45(10): 1749-1772. |
[6] | Yabin JING, Lifeng WANG, Yuqiang GAO. Mass-spring model for elastic wave propagation in multilayered van der Waals metamaterials [J]. Applied Mathematics and Mechanics (English Edition), 2024, 45(7): 1107-1118. |
[7] | Changqi CAI, Chenjie ZHU, Fengyi ZHANG, Jiaojiao SUN, Kai WANG, Bo YAN, Jiaxi ZHOU. Modeling and analysis of gradient metamaterials for broad fusion bandgaps [J]. Applied Mathematics and Mechanics (English Edition), 2024, 45(7): 1155-1170. |
[8] | Shuo WANG, Anshuai WANG, Yansen WU, Xiaofeng LI, Yongtao SUN, Zhaozhan ZHANG, Qian DING, G. D. AYALEW, Yunxiang MA, Qingyu LIN. Ultra-wide band gap and wave attenuation mechanism of a novel star-shaped chiral metamaterial [J]. Applied Mathematics and Mechanics (English Edition), 2024, 45(7): 1261-1278. |
[9] | Yiming CAO, Hui MA, Xumin GUO, Bingfeng ZHAO, Hui LI, Xin WANG, Bing WANG. Comparison of nonlinear modeling methods for the composite rubber clamp [J]. Applied Mathematics and Mechanics (English Edition), 2024, 45(5): 763-778. |
[10] | Lele REN, Wei ZHANG, Ting DONG, Yufei ZHANG. Snap-through behaviors and nonlinear vibrations of a bistable composite laminated cantilever shell:an experimental and numerical study [J]. Applied Mathematics and Mechanics (English Edition), 2024, 45(5): 779-794. |
[11] | Jinghu TANG, Chaofeng LI, Jin ZHOU, Zhiwei WU. Research on modeling and self-excited vibration mechanism in magnetic levitation-collision interface coupling system [J]. Applied Mathematics and Mechanics (English Edition), 2024, 45(5): 873-890. |
[12] | Hongyan CHEN, Youcheng ZENG, Hu DING, Siukai LAI, Liqun CHEN. Dynamics and vibration reduction performance of asymmetric tristable nonlinear energy sink [J]. Applied Mathematics and Mechanics (English Edition), 2024, 45(3): 389-406. |
[13] | Xiaodong GUO, Zhu SU, Lifeng WANG. Dynamic characteristics of multi-span spinning beams with elastic constraints under an axial compressive force [J]. Applied Mathematics and Mechanics (English Edition), 2024, 45(2): 295-310. |
[14] | Haiyang WU, Jiangfeng LOU, Biao ZHANG, Yuntong DAI, Kai LI. Stability analysis of a liquid crystal elastomer self-oscillator under a linear temperature field [J]. Applied Mathematics and Mechanics (English Edition), 2024, 45(2): 337-354. |
[15] | Ying MENG, Xiaoye MAO, Hu DING, Liqun CHEN. Nonlinear vibrations of a composite circular plate with a rigid body [J]. Applied Mathematics and Mechanics (English Edition), 2023, 44(6): 857-876. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||