Applied Mathematics and Mechanics (English Edition) ›› 1991, Vol. 12 ›› Issue (12): 1195-1207.
• Articles • Previous Articles Next Articles
Shen Hui-shen, Zhou Pin, Chen Tie-yun
Received:
1989-10-04
Online:
1991-12-18
Published:
1991-12-18
Shen Hui-shen;Zhou Pin;Chen Tie-yun. BUCKLING AND POSTBUCKLING OF STIFFENED CYLINDRICAL SHELLS UNDER AXIAL COMPRESSION. Applied Mathematics and Mechanics (English Edition), 1991, 12(12): 1195-1207.
Add to citation manager EndNote|Reference Manager|ProCite|BibTeX|RefWorks
[1] Shen,H.S.and T.Y.Chen,A boundary layer theory for the buckling of thin cylindrical shells under axial compression,Advances in Applied Mathematics and Mechanics in China,2,Int.Acadamic Publishers(1990),155-172. [2] Shang,J.C.,W.J.Marulic and Sturm,R.G.,Buckling of longitudinally stiffened cylinders,Proc.ASCE 90,ST5(1964),161-195. [3] Hedgepeth,J.M.and D.B.Hall,Stability of stiffened cylinders,AIAA J.,3(1965),2275-2286. [4] Stuhiman,C.E.,A.De Luzio and B.Almorth,Influence of stiffener eccentricity and end moment on stability of cylinders in compression,AIAA J.,4(1966),872-877. [5] Milligan,R.,G.Gerard and C.Lakshmikantham,General instability of orthotropically stiffened cylinders under axial compression,AIAA J.,4(1966),1906-1913. [6] Card,M.F.,Preliminary results of compression tests on cylinders with eccentriclongitudinal stiffeners,NASA TM X-1004(1964). [7] Katz,L.,Compression tests on integrally stiffened cylinders,NASA TM X-55315(1965). [8] Card,M.F.and R.M.Jones,Buckling of axially compressed cylinders with eccentric longitudinal stiffeners,AIAA/ASME 7th Structures and Materials Conference,Cocoa Beach,April(1966),23-24. [9] Singer,J.,M.Baruch and O.Harari,On the stability of eccentrically stiffened cylindrical shells under axial compression,Internat.J.Solids Structures,3(1967),445-470. [10] Singer,J.,J.Arbocz and C.D.Babcock,Jr.,Buckling of imperfect stiffened cylindrical shells under axial compression,AIAA J.,9(1971),68-75. [11] Weller,T.,J.Singer and S.C.Batterman,Influence of eccentricity of loading on buckling of stringer-stiffened cylindrical shells,Thin-Shell Structures,Theory,Experiment,and Design,Ed.Y.C.Fung and E.E.Sechler(1974),305-324. [12] Rosen,A.and J.Singer,Vibrations and buckling of eccentrically loaded stiffened cylindrical shells,Exp.Mech.,16(1976),88-94. [13] Singer,J.and A.Rosen,The influence of boundary conditions on the buckling of stiffened cylindrical shells,Buckling of Structures,Ed.B.Budiansky(1976),225-250. [14] Rosen,A.and J.Singer,Vibrations and buckling of axially loaded stiffened cylindrical shells with elastic restraints,Internat.J.Solids Structures,12(1976),577-588. [15] Weller,T.and J.Singer,Experimental studies on the buckling under axial compression of integrally stringer-stiffened circular cylindrical shells,J.Appl.Mech.,44(1977),721-730. [16] Singer,J.and H.Abramovich,vibration techniques for definition of practical boundary conditions in stiffened shells,AIAA J.,17(1979),762-769. [17] Tennyson,R.C.and D.B.Muggeridge,Buckling of axisymmetric imperfect circular cylindrical shells under axial compression,AIAA J.,7(1969),2127-2131. [18] Tennyson,R.C.,D.B.Muggeridge and R.D.Caswell,Buckling of circular cylindrical shells having axisymmetric imperfection distributions,AIAA J.,9(1971),924-930. [19] Tennyson,R.C.,The effect of shape imperfections and stiffening on the buckling of circular cylinders,Buckling of Structures,Ed.B.Budiansky(1976),251-275. [20] Arbocz,J.and E.E.Sechler,On the buckling of stiffened imperfect cylindrical shells,AIAA J.,14(1976),1611-1617. [21] Sheinman,I.and G.J.Simitses,Buckling analysis of geometrically imperfect stiffened cylinders under axial compression,AIAA J.,15(1977),374-382. [22] Arbocz,J.and J.G.Williams,Imperfection surveys on a 10-ft-diameter shell structure,AIAA J.,15(1977),949-956. [23] Hutchinson,J.and C.Amazigo,Imperfection-sensitivity of eccentrically stiffened cylindrical shells,AIAA J.,5(1967),392-401. [24] Brush,D.O.,Imperfection sensitivity of stringer stiffened cylinders,AIAA J.,6(1968),2445-2447. [25] Hutchinson,J.W.and J.C.Frauenthal,Elastic postbuckling behavior of stiffened andbarreled cylindrical shells,J.Appl.Mech.,36(1969),784-790. [26] Fujita,Y.and Y.Nakata,Buckling strength of stiffened cylindrical shells,J.Soc.Naval Architects of Japan,135(1974),267-281. [27] Almroth,B.O.,Postbuckling behavior of orthotropic cylinders under axial compression,AIAA J.,2(1964),1796-1799. [28 |
[1] | H. M. FEIZABAD, M. H. YAS. Free vibration and buckling analysis of polymeric composite beams reinforced by functionally graded bamboo fibers [J]. Applied Mathematics and Mechanics (English Edition), 2024, 45(3): 543-562. |
[2] | Lei WANG, Yingge LIU, Juxi HU, Weimin CHEN, Bing HAN. A non-probabilistic reliability topology optimization method based on aggregation function and matrix multiplication considering buckling response constraints [J]. Applied Mathematics and Mechanics (English Edition), 2024, 45(2): 321-336. |
[3] | Qiao ZHANG, Yuxin SUN. Statics, vibration, and buckling of sandwich plates with metamaterial cores characterized by negative thermal expansion and negative Poisson's ratio [J]. Applied Mathematics and Mechanics (English Edition), 2023, 44(9): 1457-1486. |
[4] | Shan XIA, Linghui HE. Buckling morphology of glassy nematic films with staggered director field [J]. Applied Mathematics and Mechanics (English Edition), 2023, 44(11): 1841-1852. |
[5] | Andi LAI, Bing ZHAO, Xulong PENG, Chengyun LONG. Effects of local thickness defects on the buckling of micro-beam [J]. Applied Mathematics and Mechanics (English Edition), 2022, 43(5): 729-742. |
[6] | Chi XU, Yang LI, Mingyue LU, Zhendong DAI. Buckling analysis of functionally graded nanobeams under non-uniform temperature using stress-driven nonlocal elasticity [J]. Applied Mathematics and Mechanics (English Edition), 2022, 43(3): 355-370. |
[7] | Shuai WANG, Jiajia MAO, Wei ZHANG, Haoming LU. Nonlocal thermal buckling and postbuckling of functionally graded graphene nanoplatelet reinforced piezoelectric micro-plate [J]. Applied Mathematics and Mechanics (English Edition), 2022, 43(3): 341-354. |
[8] | Xinlei LI, Jianfei WANG. Effects of layer number and initial pressure on continuum-based buckling analysis of multi-walled carbon nanotubes accounting for van der Waals interaction [J]. Applied Mathematics and Mechanics (English Edition), 2022, 43(12): 1857-1872. |
[9] | Cheng LI, Chengxiu ZHU, C. W. LIM, Shuang LI. Nonlinear in-plane thermal buckling of rotationally restrained functionally graded carbon nanotube reinforced composite shallow arches under uniform radial loading [J]. Applied Mathematics and Mechanics (English Edition), 2022, 43(12): 1821-1840. |
[10] | Tuoya SUN, Junhong GUO, E. PAN. Nonlocal vibration and buckling of two-dimensional layered quasicrystal nanoplates embedded in an elastic medium [J]. Applied Mathematics and Mechanics (English Edition), 2021, 42(8): 1077-1094. |
[11] | Zixuan LU, Liang GUO, Hongyu ZHAO. Mechanics of nonbuckling interconnects with prestrain for stretchable electronics [J]. Applied Mathematics and Mechanics (English Edition), 2021, 42(5): 689-702. |
[12] | Zhiwei LI, Guohua NIE. A procedure of the method of reverberation ray matrix for the buckling analysis of a thin multi-span plate [J]. Applied Mathematics and Mechanics (English Edition), 2020, 41(7): 1055-1068. |
[13] | A. AMIRI, M. MOHAMMADIMEHR, M. ANVARI. Stress and buckling analysis of a thick-walled micro sandwich panel with a flexible foam core and carbon nanotube reinforced composite (CNTRC) face sheets [J]. Applied Mathematics and Mechanics (English Edition), 2020, 41(7): 1027-1038. |
[14] | A. H. SOFIYEV, I. T. PIRMAMEDOV, N. KURUOGLU. Influence of elastic foundations and carbon nanotube reinforcement on the hydrostatic buckling pressure of truncated conical shells [J]. Applied Mathematics and Mechanics (English Edition), 2020, 41(7): 1011-1026. |
[15] | S. AFSHIN, M. H. YAS. Dynamic and buckling analysis of polymer hybrid composite beam with variable thickness [J]. Applied Mathematics and Mechanics (English Edition), 2020, 41(5): 785-804. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||