Applied Mathematics and Mechanics (English Edition) ›› 2019, Vol. 40 ›› Issue (7): 977-1000.doi: https://doi.org/10.1007/s10483-019-2497-8
• Articles • Previous Articles Next Articles
Yunyue CONG1, Houjun KANG1,2, Tieding GUO1
Received:
2018-10-12
Revised:
2019-01-08
Online:
2019-07-01
Published:
2019-07-01
Contact:
Houjun KANG
E-mail:khjun@hnu.edu.cn
Supported by:
2010 MSC Number:
Yunyue CONG, Houjun KANG, Tieding GUO. Analysis of in-plane 1:1:1 internal resonance of a double cable-stayed shallow arch model with cables' external excitations. Applied Mathematics and Mechanics (English Edition), 2019, 40(7): 977-1000.
[1] SCHREYER, H. L. and MASUR, E. F. Buckling of shallow arches. Journal of the Engineering Mechanics Division, 92, 1-20(1966) [2] PLAUT, R. H. Influence of load position on the stability of shallow arches. Zeitschrift für angewandte Mathematik und Physik, 30(3), 548-552(1979) [3] LEVITAS, J., SINGER, J., and WELLER, T. Global dynamic stability of a shallow arch by Poincaré-like simple cell mapping. International Journal of Non-Linear Mechanics, 32(2), 411-424(1997) [4] BRESLAVSKY, I., AVRAMOV, K. V., MIKHLIN, Y., and KOCHUROV, R. Nonlinear modes of snap-through motions of a shallow arch. Journal of Sound and Vibration, 311(1), 297-313(2008) [5] CAI, J. G., FENG, J., CHEN, Y., and HUANG, L. F. In-plane elastic stability of fixed parabolic shallow arches. Science in China, 52(3), 596-602(2009) [6] PI, Y. L. and BRADFORD, M. A. Nonlinear dynamic buckling of shallow circular arches under a sudden uniform radial load. Journal of Sound and Vibration, 331(18), 4199-4217(2012) [7] CHEN, J. S. and LIN, J. S. Dynamic snap-through of a shallow arch under a moving point load. Journal of Vibration and Acoustics, 126(4), 514-519(2004) [8] CHEN, J. S. and LI, Y. T. Effects of elastic foundation on the snap-through buckling of a shallow arch under a moving point load. International Journal of Solids and Structures, 43(14), 4220-4237(2006) [9] CHEN, J. S. and LIN, J. S. Stability of a shallow arch with one end moving at constant speed. International Journal of Non-Linear Mechanics, 41(5), 706-715(2006) [10] ABDELGAWAD, A., ANWAR, A., and NASSAR, M. Snap-through buckling of a shallow arch resting on a two-parameter elastic foundation. Applied Mathematical Modelling, 37, 7953-7963(2013) [11] HA, J., GUTMAN, S., SHON, S., and LEE, S. Stability of shallow arches under constant load. International Journal of Non-Linear Mechanics, 58(1), 120-127(2014) [12] PLAUT, R. H. Snap-through of arches and buckled beams under unilateral displacement control. International Journal of Solids and Structures, 63, 109-113(2015) [13] BLAIR, K. B., FARRIS, T. N., and KROUSGRILL, C. M. Nonlinear dynamic response of shallow arches to harmonic forcing. Journal of Sound and Vibration, 194(3), 353-367(1992) [14] LAKRAD, F. and SCHIEHLEN, W. Effects of a low frequency parametric excitation. Chaos Solitons and Fractals, 22(5), 1149-1164(2004) [15] YI, Z. P., WANG, L. H., KANG, H. J., and TU, G. Y. Modal interaction activations and nonlinear dynamic response of shallow arch with both ends vertically elastically constrained for two-to-one internal resonance. Journal of Sound and Vibration, 333(21), 5511-5524(2014) [16] TIEN, W. M., NAMACHCHIVAYA, N. S., and BAJAJ, A. K. Non-linear dynamics of a shallow arch under periodic excitation I:1:2 internal resonance. International Journal of Non-Linear Mechanics, 29(3), 349-366(1994) [17] TIEN, W. M., NAMACHCHIVAYA, N. S., and MALHOTRA, N. Non-linear dynamics of a shallow arch under periodic excitation Ⅱ:1:1 internal resonance. International Journal of Non-Linear Mechanics, 29(3), 367-386(1994) [18] MALHOTRA, N. and NAMACHCHIVAYA, N. S. Chaotic motion of shallow arch structures under 1:1 internal resonance. Journal of Engineering Mechanics, 123(6), 620-627(1997) [19] MALHOTRA, N. and NAMACHCHIVAYA, N. S. Chaotic dynamics of shallow arch structures under 1:2 resonance. Journal of Engineering Mechanics, 123(6), 612-619(1997) [20] DENG, L., WANG, F., and HE, W. Dynamic impact factors for simply-supported bridges due to vehicle braking. Advances in Structural Engineering, 18(6), 791-801(2015) [21] DENG, L., CAO, R., WANG, W., and YIN, X. F. A multi-point tire model for studying bridgevehicle coupled vibration. International Journal of Structural Stability and Dynamics, 16(8), 1550047(2016) [22] BI, Q. and DAI, H. H. Analysis of non-linear dynamics and bifurcations of a shallow arch subjected to periodic excitation with internal resonance. Journal of Sound and Vibration, 233(4), 553-567(2000) [23] CHEN, J. S. and LIAO, C. Y. Experiment and analysis on the free dynamics of a shallow arch after an impact load at the end. Journal of Applied Mechanics, 72(1), 103-115(2005) [24] YI, Z. P., WANG, L. H., and ZHAO, Y. Y. Nonlinear dynamic behaviors of viscoelastic shallow arches. Applied Mathematics and Mechanics (English Edition), 30(6), 771-777(2009) https://doi.org/10.1007/s10483-009-0611-y [25] YI, Z. P., WANG, L. H., KANG, H. J., and TU, G. Y. Modal interaction activations and nonlinear dynamic response of shallow arch with both ends vertically elastically constrained for two-to-one internal resonance. Journal of Sound and Vibration, 333(21), 5511-5524(2014) [26] DING, H., HUANG, L. L., MAO, X. Y., and CHEN, L. Q. Primary resonance of traveling viscoelastic beam under internal resonance. Applied Mathematics and Mechanics (English Edition), 38(1), 1-14(2017) https://doi.org/10.1007/s10483-016-2152-6 [27] REGA, G. Nonlinear vibrations of suspended cables-part I:modeling and analysis. Applied Mechanics Reviews, 57(6), 443-478(2004) [28] PAKDEMIRLI, M., NAYFEH, S. A., and NAYFEH, A. H. Analysis of one-to-one autoparametric resonances in cables-discretization vs. direct treatment. Nonlinear Dynamics, 8(1), 65-83(1995) [29] ZHAO, Y. Y., WANG, L. H., CHEN, D. L., and JIANG, L. Z. Non-linear dynamic analysis of the two-dimensional simplified model of an elastic cable. Journal of Sound and Vibration, 255(1), 43-59(2002) [30] SRINIL, N., REGA, G., and CHUCHEEPSAKUL. S. Two-to-one resonant multi-modal dynamics of horizontal/inclined cables, part I:theoretical formulation and model validation. Nonlinear Dynamics, 48(3), 231-252(2007) [31] SRINIL, N. and REGA, G. Two-to-one resonant multi-modal dynamics of horizontal/inclined cables, part Ⅱ:internal resonance activation, reduced-order models and nonlinear normal modes. Nonlinear Dynamics, 48(3), 253-274(2007) [32] PAULSEN, W. and MANNING, M. Finding vibrations of inclined cable structures by approximately solving governing equations for exterior matrix. Applied Mathematics and Mechanics (English Edition), 36(11), 1383-1402(2015) https://doi.org/10.1007/s10483-015-1990-7 [33] ZHAO, Y. and WANG, L. On the symmetric modal interaction of the suspended cable:three-toone internal resonance. Journal of Sound and Vibration, 294(4/5), 1073-1093(2006) [34] GUO, T. D., KANG, H. J., WANG, L. H., and ZHAO, Y. Y. Cable's mode interactions under vertical support motions:boundary resonant modulation. Nonlinear Dynamics, 84(3), 1259-1279(2016) [35] GUO, T. D., KANG, H. J., WANG, L. H., and ZHAO, Y. Y. A boundary modulation formulation for cable's non-planar coupled dynamics under out-of-plane support motion. Archive of Applied Mechanics, 86(4), 729-741(2016) [36] GUO, T. D., KANG, H. J., WANG, L. H., and ZHAO, Y. Y. Cable dynamics under non-ideal support excitations:nonlinear dynamic interactions and asymptotic modeling. Journal of Sound and Vibration, 384, 253-272(2016) [37] FUJINO, Y., WARNITCHAI, P., and PACHECO, B. M. An experimental and analytical study of autoparametric resonance in a 3DOF model of cable-stayed-beam. Nonlinear Dynamics, 4(2), 111-138(1993) [38] FUJINO, Y. and XIA, Y. Auto-parametric vibration of a cable-stayed-beam structure under random excitation. Journal of Engineering Mechanics, 132(3), 279-286(2006) [39] GATTULLI, V., MORANDINI, M., and PAOLONE, A. A parametric analytical model for nonlinear dynamics in cable-stayed beam. Earthquake Engineering and Structural Dynamics, 31(6), 1281-1300(2002) [40] LENCI, S. and RUZZICONI, L. Nonlinear phenomena in the single-mode dynamics of a cablesupported beam. International Journal of Bifurcation and Chaos, 19(3), 923-945(2009) [41] KANG, H. J., GUO, T. D., ZHAO, Y. Y., FU, W. B., and WANG, L. H. Dynamic modeling and in-plane 1:1:1 internal resonance analysis of cable-stayed bridge. European Journal of MechanicsA/Solids, 62, 94-109(2016) [42] CAO, D. Q., SONG, M. T., ZHU, W. D., TUCKER, R. W., and WANG, C. H. T. Modeling and analysis of the in-plane vibration of a complex cable-stayed bridge. Journal of Sound and Vibration, 331(26), 5685-5714(2012) [43] CAETANO, E., CUNHA, A., GATTULLI, V., and LEPIDI, M. Cable-deck dynamic interactions at the International Guadiana Bridge:on-site measurements and finite element modelling. Structural Control and Health Monitoring, 15(3), 237-264(2010) [44] CONG, Y. Y., KANG, H. J., and SU, X. Y. Cable-stayed shallow arch modeling and in-plane free vibration analysis of cable-stayed bridge with CFRP cables. Chinese Journal of Solid Mechanics, 39(3), 316-327(2018) [45] NAYFEH, A. H. and MOOK, D. T. Nonlinear Oscillations, Wiley, New York (1979) [46] CONG, Y. Y., KANG, H. J., and GUO, T. D. Planar multimodal 1:2:2 internal resonance analysis of cable-stayed bridge. Mechanical Systems and Signal Processing, 120, 505-523(2019) [47] KANG, H. J., ZHAO, Y. Y., and ZHU, H. P. In-plane non-linear dynamics of the stay cables. Nonlinear Dynamics, 73(3), 1385-1398(2013) |
[1] | Haiyang WU, Jiangfeng LOU, Biao ZHANG, Yuntong DAI, Kai LI. Stability analysis of a liquid crystal elastomer self-oscillator under a linear temperature field [J]. Applied Mathematics and Mechanics (English Edition), 2024, 45(2): 337-354. |
[2] | Runqing CAO, Zilong GUO, Wei CHEN, Huliang DAI, Lin WANG. Nonlinear dynamics of a circular curved cantilevered pipe conveying pulsating fluid based on the geometrically exact model [J]. Applied Mathematics and Mechanics (English Edition), 2024, 45(2): 261-276. |
[3] | Jie JING, Xiaoye MAO, Hu DING, Liqun CHEN. Parametric resonance of axially functionally graded pipes conveying pulsating fluid [J]. Applied Mathematics and Mechanics (English Edition), 2024, 45(2): 239-260. |
[4] | Yansong WANG, Baolin WANG, Youjiang CUI, Kaifa WANG. Anti-plane pull-out of a rigid line inclusion from an elastic medium [J]. Applied Mathematics and Mechanics (English Edition), 2023, 44(5): 809-822. |
[5] | Wei CHEN, Guozhen WANG, Yiqun LI, Lin WANG, Zhouping YIN. The quaternion beam model for hard-magnetic flexible cantilevers [J]. Applied Mathematics and Mechanics (English Edition), 2023, 44(5): 787-808. |
[6] | Jian CHEN, Yawei WANG, Xianfang LI. Antiplane shear crack in a prestressed elastic medium based on the couple stress theory [J]. Applied Mathematics and Mechanics (English Edition), 2023, 44(4): 583-602. |
[7] | Duquan ZUO, B. SAFAEI, S. SAHMANI, Guoling MA. Nonlinear free vibrations of porous composite microplates incorporating various microstructural-dependent strain gradient tensors [J]. Applied Mathematics and Mechanics (English Edition), 2022, 43(6): 825-844. |
[8] | Yaode YIN, Demin ZHAO, Jianlin LIU, Zengyao XU. Nonlinear dynamic analysis of dielectric elastomer membrane with electrostriction [J]. Applied Mathematics and Mechanics (English Edition), 2022, 43(6): 793-812. |
[9] | Lei LI, Hanbiao LIU, Jianxin HAN, Wenming ZHANG. Nonlinear modal coupling in a T-shaped piezoelectric resonator induced by stiffness hardening effect [J]. Applied Mathematics and Mechanics (English Edition), 2022, 43(6): 777-792. |
[10] | Dengbo ZHANG, Youqi TANG, Ruquan LIANG, Yuanmei SONG, Liqun CHEN. Internal resonance of an axially transporting beam with a two-frequency parametric excitation [J]. Applied Mathematics and Mechanics (English Edition), 2022, 43(12): 1805-1820. |
[11] | Yunfei LIU, Jun WANG, Jiaxin HU, Zhaoye QIN, Fulei CHU. Multiple internal resonances of rotating composite cylindrical shells under varying temperature fields [J]. Applied Mathematics and Mechanics (English Edition), 2022, 43(10): 1543-1554. |
[12] | Lei XIA, Jiaojiao SUN, Zuguang YING, Ronghua HUAN, Weiqiu ZHU. Dynamics and response reshaping of nonlinear predator-prey system undergoing random abrupt disturbances [J]. Applied Mathematics and Mechanics (English Edition), 2021, 42(8): 1123-1134. |
[13] | Yunfei LIU, Zhaoye QIN, Fulei CHU. Nonlinear dynamic responses of sandwich functionally graded porous cylindrical shells embedded in elastic media under 1:1 internal resonance [J]. Applied Mathematics and Mechanics (English Edition), 2021, 42(6): 805-818. |
[14] | Kun ZHOU, Qiao NI, Wei CHEN, Huliang DAI, Zerui PENG, Lin WANG. New insight into the stability and dynamics of fluid-conveying supported pipes with small geometric imperfections [J]. Applied Mathematics and Mechanics (English Edition), 2021, 42(5): 703-720. |
[15] | Xianghong LI, Jianhua TANG, Yanli WANG, Yongjun SHEN. Approximate analytical solution in slow-fast system based on modified multi-scale method [J]. Applied Mathematics and Mechanics (English Edition), 2020, 41(4): 605-622. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||