Applied Mathematics and Mechanics (English Edition) ›› 2025, Vol. 46 ›› Issue (9): 1787-1808.doi: https://doi.org/10.1007/s10483-025-3290-9
Previous Articles Next Articles
M. A. FARAJI1, M. ASKARI-SEDEH1, A. ZOLFAGHARIAN2,†(
), M. BAGHANI1
Received:2025-01-26
Revised:2025-07-24
Published:2025-09-12
Contact:
A. ZOLFAGHARIAN, E-mail: a.zolfagharian@deakin.edu.au2010 MSC Number:
M. A. FARAJI, M. ASKARI-SEDEH, A. ZOLFAGHARIAN, M. BAGHANI. Enhancing hydrogel predictive modeling: an augmented neural network approach for swelling dynamics in pH-responsive hydrogels. Applied Mathematics and Mechanics (English Edition), 2025, 46(9): 1787-1808.
| [1] | GHAURI, Z. H., ISLAM, A., QADIR, M. A., GULL, N., HAIDER, B., KHAN, R. U., and RIAZ, T. Development and evaluation of pH-sensitive biodegradable ternary blended hydrogel films (chitosan/guar gum/PVP) for drug delivery application. Scientific Reports, 11, 21255 (2021) |
| [2] | MANTHA, S., PILLAI, S., KHAYAMBASHI, P., UPADHYAY, A., ZHANG, Y., TAO, O., PHAM, H. M., and TRAN, S. D. Smart hydrogels in tissue engineering and regenerative medicine. Materials, 12, 3323 (2019) |
| [3] | ASKARI-SEDEH, M. and BAGHANI, M. pH-sensitive hydrogel bilayers: investigation on transient swelling-induced bending through analytical and FEM approaches. Gels, 9, 563 (2023) |
| [4] | LI, H., NG, T. Y., YEW, Y. K., and LAM, K. Y. Modeling and simulation of the swelling behaviors of pH-stimulus-responsive hydrogels. Biomacromolecules, 6, 109–120 (2005) |
| [5] | TOH, W., NG, T. Y., LIU, Z., and HU, J. Deformation kinetics of pH-sensitive hydrogels. Polymer International, 63, 1578–1583 (2014) |
| [6] | KURNIA, J. C., BIRGERSSON, E., and MUJUMDAR, A. S. Analysis of a model for pH-sensitive hydrogels. Polymer, 53, 613–622 (2012) |
| [7] | YIN, Y., GUO, C., MU, Q., LI, W., YANG, H., and HE, Y. Dual-sensing nano-yarns for real-time pH and temperature monitoring in smart textiles. Chemical Engineering Journal, 500, 157115 (2024) |
| [8] | SHEN, Y., LI, Z., ZENG, Z., LU, Q., and LEE, C. H. T. Quantitative analysis of asymmetric flux reversal permanent magnet linear machine for long excursion application. IEEE Transactions on Industrial Electronics, 71, 12781–12792 (2024) |
| [9] | BOUKLAS, N., and HUANG, R. Swelling kinetics of polymer gels: comparison of linear and nonlinear theories. Soft Matter, 8, 8194–8203 (2012) |
| [10] | CHENG, S. J., YANG, J. H., SONG, J. G., CAO, X., ZHOU, B. W., YANG, L., LI, C., and WANG, Y. A motion-responsive injectable lubricative hydrogel for efficient Achilles tendon adhesion prevention. Materials Today Bio, 30, 101458 (2025) |
| [11] | YOON, J., CAI, S., SUO, Z., and HAYWARD, R. C. Poroelastic swelling kinetics of thin hydrogel layers: comparison of theory and experiment. Soft Matter, 6, 6004–6012 (2010) |
| [12] | ARMANDO, B., GEMA, G., EURO, C., MARA, P., and ALEXANDER, B. Mathematical modeling of hydrogels swelling based on the finite element method. Applied Mathematics, 4, 161–170 (2013) |
| [13] | CHEN, H., ZHU, D., GUO, Q., ZHAO, F., ZHU, Y., and YAO, H. Simulation, verification, and prediction of thermal response of bridgewire in electro-explosive device. Measurement, 253, 117483 (2025) |
| [14] | QIAN, F., JIA, R., CHENG, M., CHAUDHARY, A., MELHI, S., MEKKEY, S. D., ZHU, N., WANG, C., RAZAK, F., XU, X., YAN, C., BAO, X., JIANG, Q., WANG, J., and HU, M. An overview of polylactic acid (PLA) nanocomposites for sensors. Advanced Composites and Hybrid Materials, 7, 75 (2024) |
| [15] | MARCOMBE, R., CAI, S., HONG, W., ZHAO, X., LAPUSTA, Y., and SUO, Z. A theory of constrained swelling of a pH-sensitive hydrogel. Soft Matter, 6, 784–793 (2010) |
| [16] | HONG, W., ZHAO, X., and SUO, Z. Large deformation and electrochemistry of polyelectrolyte gels. Journal of the Mechanics and Physics of Solids, 58, 558–577 (2010) |
| [17] | KANG, M. K. and HUANG, R. A variational approach and finite element implementation for swelling of polymeric hydrogels under geometric constraints. Journal of Applied Mechanics, 77, 061004 (2010) |
| [18] | CHESTER, S. A., DI LEO, C. V., and ANAND, L. A finite element implementation of a coupled diffusion-deformation theory for elastomeric gels. International Journal of Solids and Structures, 52, 1–18 (2015) |
| [19] | BOUKLAS, N., LANDIS, C. M., and HUANG, R. A nonlinear, transient finite element method for coupled solvent diffusion and large deformation of hydrogels. Journal of the Mechanics and Physics of Solids, 79, 21–43 (2015) |
| [20] | PROT, V., SVEINSSON, H. M., GAWEL, K., GAO, M., SKALLERUD, B., and STOKKE, B. T. Swelling of a hemi-ellipsoidal ionic hydrogel for determination of material properties of deposited thin polymer films: an inverse finite element approach. Soft Matter, 9, 5815–5827 (2013) |
| [21] | ŽURŽUL, N., ILSENG, A., PROT, V. E., SVEINSSON, H. M., SKALLERUD, B. H., and STOKKE, B. T. Donnan contribution and specific ion effects in swelling of cationic hydrogels are additive: combined high-resolution experiments and finite element modeling. Gels, 6, 31 (2020) |
| [22] | ILSENG, A., PROT, V., SKALLERUD, B. H., and STOKKE, B. T. Buckling initiation in layered hydrogels during transient swelling. Journal of the Mechanics and Physics of Solids, 128, 219–238 (2019) |
| [23] | JONÁŠOVÁ, E. P., STOKKE, B. T., and PROT, V. Interrelation between swelling, mechanical constraints and reaction-diffusion processes in molecular responsive hydrogels. Soft Matter, 18, 1510–1524 (2022) |
| [24] | ZHU, J. A., XUE, Y., and LIU, Z. A transfer learning enhanced physics-informed neural network for parameter identification in soft materials. Applied Mathematics and Mechanics (English Edition), 45(10), 1685–1704 (2024) https://doi.org/10.1007/s10483-024-3178-9 |
| [25] | WANG, J., ZHU, B., HUI, C. Y., and ZEHNDER, A. T. Determination of material parameters in constitutive models using adaptive neural network machine learning. Journal of the Mechanics and Physics of Solids, 177, 105324 (2023) |
| [26] | CHOI, J. H., JANG, W., LIM, Y. J., MUN, S. J., and BONG, K. W. Highly flexible deep-learning-based automatic analysis for graphically encoded hydrogel microparticles. ACS Sensors, 8, 3158–3166 (2023) |
| [27] | SU, H., YAN, H., ZHANG, X., and ZHONG, Z. Multiphysics-informed deep learning for swelling of pH/temperature sensitive cationic hydrogels and its inverse problem. Mechanics of Materials, 175, 104496 (2022) |
| [28] | LI, F., HAN, J., CAO, T., LAM, W., FAN, B., TANG, W., CHEN, S., FOK, K. L., and LI, L. Design of self-assembly dipeptide hydrogels and machine learning via their chemical features. Proceedings of the National Academy of Sciences of the United States of America, 116, 11259–11264 (2019) |
| [29] | SHEN, Y., LU, Q., and LI, Y. Design criterion and analysis of hybrid-excited vernier reluctance linear machine with slot halbach PM arrays. IEEE Transactions on Industrial Electronics, 70, 5074–5084 (2023) |
| [30] | WANG, Y., WALLMERSPERGER, T., and EHRENHOFER, A. Prediction of hydrogel swelling states using machine learning methods. Engineering Reports, 6, e12893 (2024) |
| [31] | FARAJI, M. A., SHOOSHTARI, A., and EL-HAG, A. Stacked ensemble regression model for prediction of furan. Energies, 16, 7656 (2023) |
| [32] | YU, W., ZHENG, W., HUA, S., ZHANG, Q., ZHANG, Z., ZHAO, J., YUAN, W., LI, G., MENG, C., ZHAO, H., and GUO, S. A prestretch-free dielectric elastomer with record-high energy and power density via synergistic polarization enhancement and strain stiffening. Advanced Functional Materials (2025) https://doi.org/10.1002/adfm.202425099 |
| [33] | WANG, Y., WALLMERSPERGER, T., and EHRENHOFER, A. Application of back propagation neural networks and random forest algorithms in material research of hydrogels. Proceedings in Applied Mathematics and Mechanics, 23, e202200278 (2023) |
| [34] | ZHENG, S., YOU, H., LAM, K. Y., and LI, H. Fracture prediction of hydrogel using machine learning and inhomogeneous multiscale network. Advanced Theory and Simulations, 7, 2300776 (2024) |
| [35] | LIU, L., LI, Z., KANG, H., XIAO, Y., SUN, L., ZHAO, H., ZHU, Z. Q., and MA, Y. Review of surrogate model assisted multi-objective design optimization of electrical machines: new opportunities and challenges. Renewable and Sustainable Energy Reviews, 215, 115609 (2025) |
| [36] | HUANG, X., WONG, Y. X., GOH, G. L., GAO X., LEE J. M., and YEONG, W. Y. Machine learning-driven prediction of gel fraction in conductive gelatin methacryloyl hydrogels. International Journal of AI for Materials and Design, 1, 3807 (2024) |
| [37] | SHOKROLLAHI, Y., DONG, P., GAMAGE, P. T., PATRAWALLA, N., KISHORE, V., MOZAFARI, H., and GU, L. Finite element-based machine learning model for predicting the mechanical properties of composite hydrogels. Applied Sciences, 12, 10835 (2022) |
| [38] | ZHU, J. A., JIA, Y., LEI, J., and LIU, Z. Deep learning approach to mechanical property prediction of single-network hydrogel. Mathematics, 9, 2804 (2021) |
| [39] | BONE, J. M., CHILDS, C. M., MENON, A., PÓZOS, B., FEINBERG, A. W., LEDUC, P. R., and WASHBURN, N. R. Hierarchical machine learning for high-fidelity 3D printed biopolymers. ACS Biomaterials Science & Engineering, 6, 7021–7031 (2020) |
| [40] | KHALVANDI, A., TAYEBI, L., KAMARIAN, S., SABER-SAMANDARI, S., and SONG, J. I. Data-driven supervised machine learning to predict the compressive response of porous PVA/Gelatin hydrogels and in-vitro assessments: employing design of experiments. International Journal of Biological Macromolecules, 253, 126906 (2023) |
| [41] | NEGUT, I. and BITA, B. Exploring the potential of artificial intelligence for hydrogel development — a short review. Gels, 9, 845 (2023) |
| [42] | DE, S. K., ALURU, N. R., JOHNSON, B., CRONE, W. C., BEEBE, D. J., and MOORE, J. Equilibrium swelling and kinetics of pH-responsive hydrogels: models, experiments, and simulations. Journal of Microelectromechanical Systems, 11, 544–555 (2002) |
| [43] | WILSON, W., HUYGHE, J. M., and VAN DONKELAAR, C. C. Depth-dependent compressive equilibrium properties of articular cartilage explained by its composition. Biomechanics and Modeling in Mechanobiology, 6, 43–53 (2007) |
| [44] | WANG, L., XIANG, G., HAN, Y., YANG, T., ZHOU, G., and WANG, J. A mixed visco-hyperelastic hydrodynamic lubrication model for water-lubricated rubber bearings. International Journal of Mechanical Sciences, 286, 109887 (2025) |
| [45] | ASKARI-SEDEH, M. and BAGHANI, M. Coupled chemo-mechanical swelling behaviors of pH-sensitive hollow cylinder hydrogels under extension-torsion and internal pressure: analytical and 3D FEM solutions. International Journal of Applied Mechanics, 15, 2350030 (2023) |
| [46] | GRIMSHAW, P. E., NUSSBAUM, J. H., GRODZINSKY, A. J., and YARMUSH, M. L. Kinetics of electrically and chemically induced swelling in polyelectrolyte gels. The Journal of Chemical Physics, 93, 4462–4472 (1990) |
| [47] | ZHENG, A. and CASARI, A. Feature Engineering for Machine Learning: Principles and Techniques for Data Scientists, O'Reilly Media, Inc. (2018) |
| [48] | BRUCE, P., BRUCE, A., and GEDECK, P. Practical Statistics for Data Scientists: 50+ Essential Concepts using R and Python, GitHub, Inc. (2020) |
| [49] | CHENG, Z., LI, L., LIU, X., BAI, X., ZHONG, C., and LIU, J. Sensorless control based on discrete fractional-order terminal sliding mode observer for high-speed PMSM with LCL filter. IEEE Transactions on Power Electronics, 40, 1654–1668 (2024) |
| [50] | LECUN, Y., BENGIO, Y., and HINTON, G. Deep learning. nature, 521, 436 (2015) |
| [51] | WANG, L., LUO, Z., LU, M., and TANG, M. A physics-informed neural network for simulation of finite deformation in hyperelastic-magnetic coupling problems. Applied Mathematics and Mechanics (English Edition), 45(10), 1717–1732 (2024) https://doi.org/10.1007/s10483-024-3174-9 |
| [52] | WU, T., LI, H., and DENG, Z. A review on recent development of theoretical modeling of hydrogel phase behaviors subject to mechanics and multiphysics coupled effects. Mechanics of Soft Materials, 1, 11 (2019) |
| [1] | Z. Z. RASHED, S. E. AHMED. Effects of surface roughness on nonlinear convective dissipative flow of micropolar nanofluids with dual activation energies and triple diffusion [J]. Applied Mathematics and Mechanics (English Edition), 2025, 46(9): 1809-1828. |
| [2] | Xuanbo JIAO, Zhixia WANG, Wei WANG, F. S. GU, S. HEYNS. Designing and optimizing an intelligent self-powered condition monitoring system for mining belt conveyor idlers and its application [J]. Applied Mathematics and Mechanics (English Edition), 2025, 46(9): 1679-1698. |
| [3] | Shun WENG, Liying WU, Zuoqiang LI, Lanbin ZHANG, Huliang DAI. Optimizing wind energy harvester with machine learning [J]. Applied Mathematics and Mechanics (English Edition), 2025, 46(8): 1417-1432. |
| [4] | Jiamin QIAN, Lincong CHEN, J. Q. SUN. Neural network solution based on the minimum potential energy principle for static problems of structural mechanics [J]. Applied Mathematics and Mechanics (English Edition), 2025, 46(6): 1125-1142. |
| [5] | K. A. LUONG, M. A. WAHAB, J. H. LEE. Simultaneous imposition of initial and boundary conditions via decoupled physics-informed neural networks for solving initial-boundary value problems [J]. Applied Mathematics and Mechanics (English Edition), 2025, 46(4): 763-780. |
| [6] | Nanxi DING, Hengzhen FENG, H. Z. LOU, Shenghua FU, Chenglong LI, Zihao ZHANG, Wenlong MA, Zhengqian ZHANG. Prediction of velocity and pressure of gas-liquid flow using spectrum-based physics-informed neural networks [J]. Applied Mathematics and Mechanics (English Edition), 2025, 46(2): 341-356. |
| [7] | K. CHANDAN, K. KARTHIK, K. V. NAGARAJA, B. C. PRASANNAKUMARA, R. S. VARUN KUMAR, T. MUHAMMAD. Radiative heat transfer analysis of a concave porous fin under the local thermal non-equilibrium condition: application of the clique polynomial method and physics-informed neural networks [J]. Applied Mathematics and Mechanics (English Edition), 2024, 45(9): 1613-1632. |
| [8] | Long WANG, Lei ZHANG, Guowei HE. Chien-physics-informed neural networks for solving singularly perturbed boundary-layer problems [J]. Applied Mathematics and Mechanics (English Edition), 2024, 45(9): 1467-1480. |
| [9] | Yiheng YANG, Kai ZHANG, Zhihua CHEN, Bin LI. Distributionally robust model predictive control for constrained robotic manipulators based on neural network modeling [J]. Applied Mathematics and Mechanics (English Edition), 2024, 45(12): 2183-2202. |
| [10] | Jiamin QIAN, Lincong CHEN, J. Q. SUN. A neural network solution of first-passage problems [J]. Applied Mathematics and Mechanics (English Edition), 2024, 45(11): 2023-2036. |
| [11] | Jiajie GONG, Xinyue LIU, Yancong ZHANG, Fengping ZHU, Guohui HU. Prediction of single cell mechanical properties in microchannels based on deep learning [J]. Applied Mathematics and Mechanics (English Edition), 2024, 45(11): 1857-1874. |
| [12] | Lei WANG, Zikun LUO, Mengkai LU, Minghai TANG. A physics-informed neural network for simulation of finite deformation in hyperelastic-magnetic coupling problems [J]. Applied Mathematics and Mechanics (English Edition), 2024, 45(10): 1717-1732. |
| [13] | Jing'ang ZHU, Yiheng XUE, Zishun LIU. A transfer learning enhanced physics-informed neural network for parameter identification in soft materials [J]. Applied Mathematics and Mechanics (English Edition), 2024, 45(10): 1685-1704. |
| [14] | J. WU, S. F. WANG, P. PERDIKARIS. A dive into spectral inference networks: improved algorithms for self-supervised learning of continuous spectral representations [J]. Applied Mathematics and Mechanics (English Edition), 2023, 44(7): 1199-1224. |
| [15] | J. N. FUHG, A. KARMARKAR, T. KADEETHUM, H. YOON, N. BOUKLAS. Deep convolutional Ritz method: parametric PDE surrogates without labeled data [J]. Applied Mathematics and Mechanics (English Edition), 2023, 44(7): 1151-1174. |
| Viewed | ||||||
|
Full text |
|
|||||
|
Abstract |
|
|||||

Email Alert
RSS