[1] CHEN, L., ZHANG, W., and LIU, Y. Modeling of nonlinear oscillations for viscoelastic moving belt using generalized Hamilton's principle. Journal of Vibration and Acoustics, 129(1), 128-132(2007) [2] DING, H. and CHEN, L. Q. Galerkin methods for natural frequencies of high-speed axially moving beams. Journal of Sound and Vibration, 329(17), 3484-3494(2010) [3] YAO, M., ZHANG, W., and ZU, J. W. Multi-pulse chaotic dynamics in non-planar motion of parametrically excited viscoelastic moving belt. Journal of Sound and Vibration, 331(11), 2624-2653(2012) [4] DING, H., HUANG, L. L., DOWELL, E., and CHEN, L. Q. Stress distribution and fatigue life of nonlinear vibration of an axially moving beam. Science China Technological Sciences, 62(7), 1123-1133(2019) [5] MAO, X. Y., DING, H., and CHEN, L. Q. Internal resonance of a supercritically axially moving beam subjected to the pulsating speed. Nonlinear Dynamics, 95(1), 631-651(2019) [6] CHEN, L. Q. Analysis and control of transverse vibrations of axially moving strings. Applied Mechanics Reviews, 58(2), 91-116(2005) [7] PELLICANO, F. and VESTRONI, F. Nonlinear dynamics and bifurcations of an axially moving beam. Journal of Vibration and Acoustics, 122(1), 21-30(2000) [8] ÖZ, H., PAKDEMIRLI, M., and BOYACI, H. Non-linear vibrations and stability of an axially moving beam with time-dependent velocity. International Journal of Non-Linear Mechanics, 36(1), 107-115(2001) [9] ZHANG, W., WANG, D., and YAO, M. Using Fourier differential quadrature method to analyze transverse nonlinear vibrations of an axially accelerating viscoelastic beam. Nonlinear Dynamics, 78(2), 839-856(2014) [10] CHEN, L. Q. and YANG, X. D. Steady-state response of axially moving viscoelastic beams with pulsating speed:comparison of two nonlinear models. International Journal of Solids and Structures, 42(1), 37-50(2005) [11] GHAYESH, M. H. and BALAR, S. Non-linear parametric vibration and stability of axially moving visco-elastic Rayleigh beams. International Journal of Solids and Structures, 45(25-26), 6451-6467(2008) [12] CHEN, L., ZHANG, W., and YANG, F. Nonlinear dynamics of higher-dimensional system for an axially accelerating viscoelastic beam with in-plane and out-of-plane vibrations. Journal of Sound and Vibration, 329(25), 5321-5345(2010) [13] YANG, X. D., TANG, Y. Q., CHEN, L. Q., and LIM, C. W. Dynamic stability of axially accelerating Timoshenko beam:averaging method. European Journal of Mechanics-A/Solids, 29(1), 81-90(2010) [14] CHANG, J. R., LIN, W. J., HUANG, C. J., and CHOI, S. T. Vibration and stability of an axially moving Rayleigh beam. Applied Mathematical Modelling, 34(6), 1482-1497(2010) [15] HUANG, J., SU, R., LI, W., and CHEN, S. Stability and bifurcation of an axially moving beam tuned to three-to-one internal resonances. Journal of Sound and Vibration, 330(3), 471-485(2011) [16] DING, H. and CHEN, L. Q. Natural frequencies of nonlinear vibration of axially moving beams. Nonlinear Dynamics, 63(1-2), 125-134(2011) [17] ZHOU, Y. F. and WANG, Z. M. Transverse vibration characteristics of axially moving viscoelastic plate. Applied Mathematics and Mechanics (English Edition), 28(2), 209-218(2007) https://doi.org/10.1007/s10483-007-0209-1 [18] BANICHUK, N., JERONEN, J., NEITTAANMÄI, P., and TUOVINEN, T. On the instability of an axially moving elastic plate. International Journal of Solids and Structures, 47(1), 91-99(2010) [19] MARYNOWSKI, K. Free vibration analysis of the axially moving Lévy-type viscoelastic plate. European Journal of Mechanics-A/Solids, 29(5), 879-886(2010) [20] YANG, X. D., ZHANG, W., CHEN, L. Q., and YAO, M. H. Dynamical analysis of axially moving plate by finite difference method. Nonlinear Dynamics, 67(2), 997-1006(2012) [21] GHAYESH, M. H., AMABILI, M., and PAIDOUSSIS, M. P. Nonlinear dynamics of axially moving plates. Journal of Sound and Vibration, 332(2), 391-406(2013) [22] ZHANG, D. B., TANG, Y. Q., and CHEN, L. Q. Internal resonance in parametric vibrations of axially accelerating viscoelastic plates. European Journal of Mechanics-A/Solids, 75, 142-155(2019) [23] ZHANG, W., LU, S., and YANG, X. Analysis on nonlinear dynamics of a deploying composite laminated cantilever plate. Nonlinear Dynamics, 76(1), 69-93(2014) [24] WANG, L. and NI, Q. Vibration and stability of an axially moving beam immersed in fluid. International Journal of Solids and Structures, 45(5), 1445-1457(2008) [25] NI, Q., LI, M., TANG, M., and WANG, L. Free vibration and stability of a cantilever beam attached to an axially moving base immersed in fluid. Journal of Sound and Vibration, 333(9), 2543-2555(2014) [26] WANG, Y. Q., HUANG, X. B., and LI, J. Hydroelastic dynamic analysis of axially moving plates in continuous hot-dip galvanizing process. International Journal of Mechanical Sciences, 110, 201-216(2016) [27] WANG, Y. Q. and ZU, J. W. Instability of viscoelastic plates with longitudinally variable speed and immersed in ideal liquid. International Journal of Applied Mechanics, 9(1), 1750005(2017) [28] REDDY, J. N. Theory and Analysis of Elastic Plates and Shells, CRC Press, Florida (2006) [29] CHARBONNEAU, E. and LAKIS, A. A. Semi-analytical shape functions in the finite element analysis of rectangular plates. Journal of Sound and Vibration, 242(3), 427-443(2001) [30] ELGER, D. F., ROBERSON, J. A., WILLIAMS, B. C., and CROWE, C. T. Engineering Fluid Mechanics, Wiley, New Jersey (2016) [31] AMABILI, M. Nonlinear Vibrations and Stability of Shells and Plates, Cambridge University Press, London (2008) [32] KERBOUA, Y., LAKIS, A., THOMAS, M., and MARCOUILLER, L. Vibration analysis of rectangular plates coupled with fluid. Applied Mathematical Modelling, 32(12), 2570-2586(2008) [33] FU, Y. and PRICE, W. Interactions between a partially or totally immersed vibrating cantilever plate and the surrounding fluid. Journal of Sound and Vibration, 118(3), 495-513(1987) [34] LINDHOLM, U. S., KANA, D. D., CHU, W. H., and ABRAMSON, H. N. Elastic vibration characteristics of cantilever plates in water. Journal of Ship Research, 9(2), 11-36(1965) |